source: trunk/source/processes/electromagnetic/lowenergy/include/G4PenelopeIonisationModel.hh @ 1315

Last change on this file since 1315 was 1315, checked in by garnier, 14 years ago

update geant4-09-04-beta-cand-01 interfaces-V09-03-09 vis-V09-03-08

File size: 7.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4PenelopeIonisationModel.hh,v 1.5 2010/04/15 10:02:10 pandola Exp $
27// GEANT4 tag $Name: geant4-09-04-beta-cand-01 $
28//
29// Author: Luciano Pandola
30//
31// History:
32// -----------
33// 26 Nov 2008   L. Pandola   1st implementation. Migration from EM process
34//                            to EM model. Physics is unchanged.
35// 21 Oct 2009   L. Pandola   Remove un-necessary methods and variables to handle
36//                            AtomicDeexcitationFlag - now demanded to G4VEmModel
37//                            Add ActivateAuger() method
38// 29 Mar 2010   L. Pandola   Added a dummy ComputeCrossSectioPerAtom() method issueing a
39//                            warning if users try to access atomic cross sections via
40//                            G4EmCalculator
41// 15 Apr 2010   L. Pandola   Implemented model's own version of MinEnergyCut()
42//
43// -------------------------------------------------------------------
44//
45// Class description:
46// Low Energy Electromagnetic Physics, e+ and e- ionisation
47// with Penelope Model
48// -------------------------------------------------------------------
49
50#ifndef G4PENELOPEIONISATIONMODEL_HH
51#define G4PENELOPEIONISATIONMODEL_HH 1
52
53#include "globals.hh"
54#include "G4VEmModel.hh"
55#include "G4DataVector.hh"
56#include "G4ParticleChangeForLoss.hh"
57#include "G4VCrossSectionHandler.hh"
58#include "G4PhysicsLogVector.hh"
59#include "G4AtomicDeexcitation.hh"
60
61class G4ParticleDefinition;
62class G4DynamicParticle;
63class G4MaterialCutsCouple;
64class G4Material;
65class G4VEMDataSet;
66
67class G4PenelopeIonisationModel : public G4VEmModel
68{
69
70public:
71 
72  G4PenelopeIonisationModel(const G4ParticleDefinition* p=0,
73                         const G4String& processName ="PenelopeIoni");
74 
75  virtual ~G4PenelopeIonisationModel();
76
77  virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&);
78
79  //*This is a dummy method. Never inkoved by the tracking, it just issues
80  //*a warning if one tries to get Cross Sections per Atom via the
81  //*G4EmCalculator.
82  virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
83                                              G4double,
84                                              G4double,
85                                              G4double,
86                                              G4double,
87                                              G4double);
88
89  virtual G4double CrossSectionPerVolume(const G4Material* material,
90                                         const G4ParticleDefinition* theParticle,
91                                         G4double kineticEnergy,
92                                         G4double cutEnergy,
93                                         G4double maxEnergy = DBL_MAX);
94                                         
95  virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*,
96                                 const G4MaterialCutsCouple*,
97                                 const G4DynamicParticle*,
98                                 G4double tmin,
99                                 G4double maxEnergy);
100                                   
101  virtual G4double ComputeDEDXPerVolume(const G4Material*,
102                               const G4ParticleDefinition*,
103                               G4double kineticEnergy,
104                               G4double cutEnergy);
105                               
106  // Min cut in kinetic energy allowed by the model
107  virtual G4double MinEnergyCut(const G4ParticleDefinition*,
108                                const G4MaterialCutsCouple*);
109
110  void SetVerbosityLevel(G4int lev){verboseLevel = lev;};
111  G4int GetVerbosityLevel(){return verboseLevel;};
112
113  void ActivateAuger(G4bool);
114
115protected:
116  G4ParticleChangeForLoss* fParticleChange;
117
118private:
119 
120  G4PenelopeIonisationModel & operator=(const G4PenelopeIonisationModel &right);
121  G4PenelopeIonisationModel(const G4PenelopeIonisationModel&);
122
123 
124  //Intrinsic energy limits of the model: cannot be extended by the parent process
125  G4double fIntrinsicLowEnergyLimit;
126  G4double fIntrinsicHighEnergyLimit;
127
128  G4int verboseLevel;
129
130  G4bool isInitialised;
131 
132  G4double CalculateDeltaFermi(G4double kinEnergy ,G4int Z,
133                               G4double electronVolumeDensity);
134       
135  //Methods and variables to calculate final state
136  void CalculateDiscreteForElectrons(G4double kinEnergy,G4double cutoffEnergy,
137                                     G4int Z,G4double electronVolumeDensity);
138  void CalculateDiscreteForPositrons(G4double kinEnergy,G4double cutoffEnergy,
139                             G4int Z,G4double electronVolumeDensity);
140
141  G4AtomicDeexcitation deexcitationManager;
142  G4double kineticEnergy1;
143  G4double cosThetaPrimary;
144  G4double energySecondary;
145  G4double cosThetaSecondary;
146  G4int iOsc;                             
147
148  //These methods are used to calculate the hard-cross section (namely they
149  //return the hard/total cross section)
150  G4double CalculateCrossSectionsRatio(G4double kinEnergy,
151                                       G4double cutoffEnergy,
152                                       G4int Z, 
153                                       G4double electronVolumeDensity,
154                                       const G4ParticleDefinition*);
155  //In fact the total cross section (hard+soft) is read from file
156  //The following methods give the cross section contribution (hard and soft) from each
157  //individual oscillator
158  std::pair<G4double,G4double> CrossSectionsRatioForElectrons(G4double kineticEnergy,
159                                                              G4double resEnergy,
160                                                              G4double densityCorrection,
161                                                              G4double cutoffEnergy);
162
163  std::pair<G4double,G4double> CrossSectionsRatioForPositrons(G4double kineticEnergy,
164                                                              G4double resEnergy,
165                                                              G4double densityCorrection,
166                                                              G4double cutoffEnergy);
167 
168  G4VCrossSectionHandler* crossSectionHandler;
169 
170  //These methods are used to calculate the stopping power up to the cutoff
171  //for each individual oscillator
172  G4double ComputeStoppingPowerForElectrons(G4double kinEnergy,
173                                            G4double cutEnergy,
174                                            G4double deltaFermi,
175                                            G4double resEnergy);
176
177  G4double ComputeStoppingPowerForPositrons(G4double kinEnergy,
178                                            G4double cutEnergy,
179                                            G4double deltaFermi,
180                                            G4double resEnergy);
181 
182 
183  //Parameters of atomic shells
184  void ReadData();
185  std::map<G4int,G4DataVector*> *ionizationEnergy;
186  std::map<G4int,G4DataVector*> *resonanceEnergy;
187  std::map<G4int,G4DataVector*> *occupationNumber;
188  std::map<G4int,G4DataVector*> *shellFlag;
189 
190  //Mean free path table. This will become obsolete! For now I need something to store
191  //cross sections and to sample a random atom
192  std::vector<G4VEMDataSet*>* theXSTable;
193  std::vector<G4VEMDataSet*>* BuildCrossSectionTable(const G4ParticleDefinition*);
194  G4int SampleRandomAtom(const G4MaterialCutsCouple*,G4double energy) const;
195
196};
197
198#endif
199
Note: See TracBrowser for help on using the repository browser.