// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4AtomicTransitionManager.hh,v 1.2 ???? // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // ------------------------------------------------------------------- // // Geant4 Header G4UAtomicDeexcitation // // Authors: Alfonso Mantero (Alfonso.Mantero@ge.infn.it) // // Created 22 April 2010 from old G4AtomicDeexcitation class // // Modified: // --------- // // // ------------------------------------------------------------------- // // Class description: // Implementation of atomic deexcitation // // ------------------------------------------------------------------- #ifndef G4UAtomicDeexcitation_h #define G4UAtomicDeexcitation_h 1 #include "G4VAtomDeexcitation.hh" #include "G4AtomicShell.hh" #include "globals.hh" #include #include "G4DynamicParticle.hh" //#include "G4VhShellCrossSection.hh" #include "G4teoCrossSection.hh" #include "G4empCrossSection.hh" class G4AtomicTransitionManager; class G4VhShellCrossSection; //class G4teoCrossSection; //class G4empCrossSection; class G4UAtomicDeexcitation : public G4VAtomDeexcitation { public: G4UAtomicDeexcitation(); virtual ~G4UAtomicDeexcitation(); //================================================================= // methods that are requested to be implemented by the interface //================================================================= // initialisation methods virtual void InitialiseForNewRun(); virtual void InitialiseForExtraAtom(G4int Z); // Set threshold energy for fluorescence void SetCutForSecondaryPhotons(G4double cut); // Set threshold energy for Auger electron production void SetCutForAugerElectrons(G4double cut); // Get atomic shell by shell index, used by discrete processes // (for example, photoelectric), when shell vacancy sampled by the model virtual const G4AtomicShell* GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell); // generation of deexcitation for given atom, shell vacancy and cuts virtual void GenerateParticles(std::vector* secVect, const G4AtomicShell*, G4int Z, G4double gammaCut, G4double eCut); // access or compute PIXE cross section virtual G4double GetShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, G4int Z, G4AtomicShellEnumerator shell, G4double kinE); // access or compute PIXE cross section virtual G4double ComputeShellIonisationCrossSectionPerAtom(const G4ParticleDefinition*, G4int Z, G4AtomicShellEnumerator shell, G4double kinE); //================================================================= // concrete methods of the deextation class //================================================================= private: // Decides wether a radiative transition is possible and, if it is, // returns the identity of the starting shell for the transition G4int SelectTypeOfTransition(G4int Z, G4int shellId); // Generates a particle from a radiative transition and returns it G4DynamicParticle* GenerateFluorescence(G4int Z, G4int shellId, G4int provShellId); // Generates a particle from a non-radiative transition and returns it G4DynamicParticle* GenerateAuger(G4int Z, G4int shellId); // copy constructor and hide assignment operator G4UAtomicDeexcitation(G4UAtomicDeexcitation &); G4UAtomicDeexcitation & operator=(const G4UAtomicDeexcitation &right); const G4AtomicTransitionManager* transitionManager; // Data member which stores the shells to be filled by // the radiative transition G4int newShellId; G4double minGammaEnergy; G4double minElectronEnergy; // G4bool fAuger; // Data member wich stores the id of the shell where is the vacancy // left from the Auger electron G4int augerVacancyId; // Data member for the calculation of the proton and alpha ionisation XS G4VhShellCrossSection* PIXEshellCS; }; #endif