source: trunk/source/processes/electromagnetic/lowenergy/include/G4hLowEnergyIonisation.hh@ 1036

Last change on this file since 1036 was 819, checked in by garnier, 17 years ago

import all except CVS

File size: 13.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// ------------------------------------------------------------
28// GEANT 4 class header file
29//
30// History: based on object model of
31// 2nd December 1995, G.Cosmo
32// ---------- G4hLowEnergyIonisation physics process -----
33// by Vladimir Ivanchenko, 14 July 1999
34// was made on the base of G4hIonisation class
35// developed by Laszlo Urban
36// ************************************************************
37
38// ************************************************************
39// 28 July 1999 V.Ivanchenko cleen up
40// 17 August 1999 G.Mancinelli implemented ICRU parametrization (protons)
41// 20 August 1999 G.Mancinelli implemented ICRU parametrization (alpha)
42// 31 August 1999 V.Ivanchenko update and cleen up
43// 23 May 2000 MG Pia Clean up for QAO model
44// 25 July 2000 V.Ivanchenko New design iteration
45// 09 August 2000 V.Ivanchenko Add GetContinuousStepLimit
46// 17 August 2000 V.Ivanchenko Add IonFluctuationModel
47// 23 Oct 2000 V.Ivanchenko Renew comments
48// 30 Oct 2001 V.Ivanchenko Add minGammaEnergy and minElectronEnergy
49// 07 Dec 2001 V.Ivanchenko Add SetFluorescence method
50// 26 Feb 2002 V.Ivanchenko Add initialMass for GenericIons
51// 21 Jan 2003 V.Ivanchenko Cut per region
52// ------------------------------------------------------------
53
54// Class Description:
55// Ionisation process of charged hadrons and ions, including low energy
56// extensions
57// The physics model is described in CERN-OPEN-99-121 and CERN-OPEN-99-300.
58// The user may select parametrisation tables for electronic
59// stopping powers and nuclear stopping powers
60// The list of available tables:
61// Electronic stopping powers: "ICRU_49p" (default), "ICRU_49He",
62// "Ziegler1977p", "Ziegler1985p",
63// "Ziegler1977He"
64// Nuclear stopping powers: "ICRU_49" (default), "Ziegler1977",
65// "Ziegler1985"
66// Further documentation available from http://www.ge.infn.it/geant4/lowE
67// and in the Physics Reference Manual
68
69// ------------------------------------------------------------
70
71#ifndef G4hLowEnergyIonisation_h
72#define G4hLowEnergyIonisation_h 1
73
74#include "globals.hh"
75#include "G4hLowEnergyLoss.hh"
76#include "G4VLowEnergyModel.hh"
77#include "G4Track.hh"
78#include "G4Step.hh"
79#include "G4Electron.hh"
80#include "G4PhysicsLogVector.hh"
81#include "G4PhysicsLinearVector.hh"
82#include "G4hNuclearStoppingModel.hh"
83#include "G4hBetheBlochModel.hh"
84#include "G4hParametrisedLossModel.hh"
85#include "G4QAOLowEnergyLoss.hh"
86#include "G4hIonEffChargeSquare.hh"
87#include "G4IonChuFluctuationModel.hh"
88#include "G4IonYangFluctuationModel.hh"
89#include "G4AtomicDeexcitation.hh"
90#include "G4MaterialCutsCouple.hh"
91#include <map>
92
93class G4VEMDataSet;
94class G4ShellVacancy;
95class G4VhShellCrossSection;
96
97class G4hLowEnergyIonisation : public G4hLowEnergyLoss
98{
99public: // With description
100
101 G4hLowEnergyIonisation(const G4String& processName = "hLowEIoni");
102 // The ionisation process for hadrons/ions to be include in the
103 // UserPhysicsList
104
105 ~G4hLowEnergyIonisation();
106 // Destructor
107
108 G4bool IsApplicable(const G4ParticleDefinition&);
109 // True for all charged hadrons/ions
110
111 void BuildPhysicsTable(const G4ParticleDefinition& aParticleType) ;
112 // Build physics table during initialisation
113
114 G4double GetMeanFreePath(const G4Track& track,
115 G4double previousStepSize,
116 enum G4ForceCondition* condition );
117 // Return MeanFreePath until delta-electron production
118
119 void PrintInfoDefinition() const;
120 // Print out of the class parameters
121
122 void SetHighEnergyForProtonParametrisation(G4double energy)
123 {protonHighEnergy = energy;} ;
124 // Definition of the boundary proton energy. For higher energies
125 // Bethe-Bloch formula is used, for lower energies a parametrisation
126 // of the energy losses is performed. Default is 2 MeV.
127
128 void SetLowEnergyForProtonParametrisation(G4double energy)
129 {protonLowEnergy = energy;} ;
130 // Set of the boundary proton energy. For lower energies
131 // the Free Electron Gas model is used for the energy losses.
132 // Default is 1 keV.
133
134 void SetHighEnergyForAntiProtonParametrisation(G4double energy)
135 {antiProtonHighEnergy = energy;} ;
136 // Set of the boundary antiproton energy. For higher energies
137 // Bethe-Bloch formula is used, for lower energies parametrisation
138 // of the energy losses is performed. Default is 2 MeV.
139
140 void SetLowEnergyForAntiProtonParametrisation(G4double energy)
141 {antiProtonLowEnergy = energy;} ;
142 // Set of the boundary antiproton energy. For lower energies
143 // the Free Electron Gas model is used for the energy losses.
144 // Default is 1 keV.
145
146 G4double GetContinuousStepLimit(const G4Track& track,
147 G4double previousStepSize,
148 G4double currentMinimumStep,
149 G4double& currentSafety);
150 // Calculation of the step limit due to ionisation losses
151
152 void SetElectronicStoppingPowerModel(const G4ParticleDefinition* aParticle,
153 const G4String& dedxTable);
154 // This method defines the electron ionisation parametrisation method
155 // via the name of the table. Default is "ICRU_49p".
156
157 void SetNuclearStoppingPowerModel(const G4String& dedxTable)
158 {theNuclearTable = dedxTable; SetNuclearStoppingOn();};
159 // This method defines the nuclear ionisation parametrisation method
160 // via the name of the table. Default is "ICRU_49".
161
162 void SetNuclearStoppingOn() {nStopping = true;};
163 // This method switch on calculation of the nuclear stopping power.
164
165 void SetNuclearStoppingOff() {nStopping = false;};
166 // This method switch off calculation of the nuclear stopping power.
167
168 void SetBarkasOn() {theBarkas = true;};
169 // This method switch on calculation of the Barkas and Bloch effects.
170
171 void SetBarkasOff() {theBarkas = false;};
172 // This method switch off calculation of the Barkas and Bloch effects.
173
174 void SetFluorescence(const G4bool val) {theFluo = val;};
175 // This method switch on/off simulation of the fluorescence of the media.
176
177 G4VParticleChange* AlongStepDoIt(const G4Track& trackData ,
178 const G4Step& stepData ) ;
179 // Function to determine total energy deposition on the step
180
181 G4VParticleChange* PostStepDoIt(const G4Track& track,
182 const G4Step& Step ) ;
183 // Simulation of delta rays production.
184
185 G4double ComputeDEDX(const G4ParticleDefinition* aParticle,
186 const G4MaterialCutsCouple* couple,
187 G4double kineticEnergy);
188 // This method returns electronic dE/dx for protons or antiproton.
189
190 void SetCutForSecondaryPhotons(G4double cut);
191 // Set threshold energy for fluorescence
192
193 void SetCutForAugerElectrons(G4double cut);
194 // Set threshold energy for Auger electron production
195
196 void ActivateAugerElectronProduction(G4bool val);
197 // Set Auger electron production flag on/off
198
199
200protected:
201
202private:
203
204 void InitializeMe();
205
206 void InitializeParametrisation();
207
208 void BuildLossTable(const G4ParticleDefinition& aParticleType);
209
210 void BuildDataForFluorescence(const G4ParticleDefinition& aParticleType);
211
212 void BuildLambdaTable(const G4ParticleDefinition& aParticleType);
213
214 void SetProtonElectronicStoppingPowerModel(const G4String& dedxTable)
215 {theProtonTable = dedxTable ;};
216 // This method defines the ionisation parametrisation method via its name
217
218 void SetAntiProtonElectronicStoppingPowerModel(const G4String& dedxTable)
219 {theAntiProtonTable = dedxTable ;};
220
221 G4double ComputeMicroscopicCrossSection(
222 const G4ParticleDefinition& aParticleType,
223 G4double kineticEnergy,
224 G4double atomicNumber,
225 G4double deltaCutInEnergy) const;
226
227 G4double GetConstraints(const G4DynamicParticle* particle,
228 const G4MaterialCutsCouple* couple);
229 // Function to determine StepLimit
230
231 G4double ProtonParametrisedDEDX(const G4MaterialCutsCouple* couple,
232 G4double kineticEnergy) const;
233
234 G4double AntiProtonParametrisedDEDX(const G4MaterialCutsCouple* couple,
235 G4double kineticEnergy) const;
236
237 G4double DeltaRaysEnergy(const G4MaterialCutsCouple* couple,
238 G4double kineticEnergy,
239 G4double particleMass) const;
240 // This method returns average energy loss due to delta-rays emission with
241 // energy higher than the cut energy for given material.
242
243 G4double BarkasTerm(const G4Material* material,
244 G4double kineticEnergy) const;
245 // Function to compute the Barkas term for protons
246
247 G4double BlochTerm(const G4Material* material,
248 G4double kineticEnergy,
249 G4double cSquare) const;
250 // Function to compute the Bloch term for protons
251
252 G4double ElectronicLossFluctuation(const G4DynamicParticle* particle,
253 const G4MaterialCutsCouple* material,
254 G4double meanLoss,
255 G4double step) const;
256 // Function to sample electronic losses
257
258 std::vector<G4DynamicParticle*>* DeexciteAtom(const G4MaterialCutsCouple* couple,
259 G4double incidentEnergy,
260 G4double hMass,
261 G4double eLoss);
262
263 G4int SelectRandomAtom(const G4MaterialCutsCouple* couple,
264 G4double kineticEnergy) const;
265
266 // hide assignment operator
267 G4hLowEnergyIonisation & operator=(const G4hLowEnergyIonisation &right);
268 G4hLowEnergyIonisation(const G4hLowEnergyIonisation&);
269
270private:
271 // private data members ...............................
272 G4VLowEnergyModel* theBetheBlochModel;
273 G4VLowEnergyModel* theProtonModel;
274 G4VLowEnergyModel* theAntiProtonModel;
275 G4VLowEnergyModel* theIonEffChargeModel;
276 G4VLowEnergyModel* theNuclearStoppingModel;
277 G4VLowEnergyModel* theIonChuFluctuationModel;
278 G4VLowEnergyModel* theIonYangFluctuationModel;
279 std::map<G4int,G4double,std::less<G4int> > totalCrossSectionMap;
280
281 // name of parametrisation table of electron stopping power
282 G4String theProtonTable;
283 G4String theAntiProtonTable;
284 G4String theNuclearTable;
285
286 // interval of parametrisation of electron stopping power
287 G4double protonLowEnergy;
288 G4double protonHighEnergy;
289 G4double antiProtonLowEnergy;
290 G4double antiProtonHighEnergy;
291
292 // flag of parametrisation of nucleus stopping power
293 G4bool nStopping;
294 G4bool theBarkas;
295
296 G4DataVector cutForDelta;
297 G4DataVector cutForGamma;
298 G4double minGammaEnergy;
299 G4double minElectronEnergy;
300 G4PhysicsTable* theMeanFreePathTable;
301
302 const G4double paramStepLimit; // parameter limits the step at low energy
303
304 G4double fdEdx; // computed in GetContraints
305 G4double fRangeNow ; //
306 G4double charge; //
307 G4double chargeSquare; //
308 G4double initialMass; // mass to calculate Lambda tables
309 G4double fBarkas;
310
311 G4AtomicDeexcitation deexcitationManager;
312 G4ShellVacancy* shellVacancy;
313 G4VhShellCrossSection* shellCS;
314 std::vector<G4VEMDataSet*> zFluoDataVector;
315 G4bool theFluo;
316 G4bool expFlag;
317};
318
319//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320
321inline G4double G4hLowEnergyIonisation::GetContinuousStepLimit(
322 const G4Track& track,
323 G4double,
324 G4double currentMinimumStep,
325 G4double&)
326{
327 G4double Step =
328 GetConstraints(track.GetDynamicParticle(),track.GetMaterialCutsCouple()) ;
329
330 if((Step>0.0)&&(Step<currentMinimumStep))
331 currentMinimumStep = Step ;
332
333 return Step ;
334}
335
336//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
337
338inline G4bool G4hLowEnergyIonisation::IsApplicable(
339 const G4ParticleDefinition& particle)
340{
341 return(particle.GetPDGCharge() != 0.0
342 && particle.GetPDGMass() > proton_mass_c2*0.1);
343}
344
345//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
346
347#endif
348
349
350
351
352
353
354
355
Note: See TracBrowser for help on using the repository browser.