source: trunk/source/processes/electromagnetic/lowenergy/include/G4hLowEnergyIonisation.hh @ 1312

Last change on this file since 1312 was 1228, checked in by garnier, 15 years ago

update geant4.9.3 tag

File size: 13.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// ------------------------------------------------------------
28//      GEANT 4 class header file
29//
30//      History: based on object model of
31//      2nd December 1995, G.Cosmo
32//      ---------- G4hLowEnergyIonisation physics process -----
33//                by Vladimir Ivanchenko, 14 July 1999
34//                was made on the base of G4hIonisation class
35//                developed by Laszlo Urban
36// ************************************************************
37
38// ************************************************************
39// 28 July   1999 V.Ivanchenko cleen up
40// 17 August 1999 G.Mancinelli implemented ICRU parametrization (protons) 
41// 20 August 1999 G.Mancinelli implemented ICRU parametrization (alpha) 
42// 31 August 1999 V.Ivanchenko update and cleen up
43// 23 May    2000    MG Pia  Clean up for QAO model
44// 25 July   2000 V.Ivanchenko New design iteration
45// 09 August 2000 V.Ivanchenko Add GetContinuousStepLimit
46// 17 August 2000 V.Ivanchenko Add IonFluctuationModel
47// 23 Oct    2000 V.Ivanchenko Renew comments
48// 30 Oct    2001 V.Ivanchenko Add minGammaEnergy and minElectronEnergy
49// 07 Dec    2001 V.Ivanchenko Add SetFluorescence method
50// 26 Feb    2002 V.Ivanchenko Add initialMass for GenericIons
51// 21 Jan    2003 V.Ivanchenko Cut per region
52// ------------------------------------------------------------
53 
54// Class Description:
55// Ionisation process of charged hadrons and ions, including low energy
56// extensions
57// The physics model is described in CERN-OPEN-99-121 and CERN-OPEN-99-300.
58// The user may select parametrisation tables for electronic
59// stopping powers and nuclear stopping powers
60// The list of available tables:
61// Electronic stopping powers: "ICRU_49p" (default), "ICRU_49He",
62//                             "Ziegler1977p", "Ziegler1985p",
63//                             "Ziegler1977He"
64// Nuclear stopping powers:    "ICRU_49" (default), "Ziegler1977",
65//                             "Ziegler1985"
66// Further documentation available from http://www.ge.infn.it/geant4/lowE
67// and in the Physics Reference Manual
68
69// ------------------------------------------------------------
70
71#ifndef G4hLowEnergyIonisation_h
72#define G4hLowEnergyIonisation_h 1
73 
74#include "globals.hh"
75#include "G4hLowEnergyLoss.hh"
76#include "G4VLowEnergyModel.hh"
77#include "G4Track.hh"
78#include "G4Step.hh"
79#include "G4Electron.hh"
80#include "G4PhysicsLogVector.hh"
81#include "G4PhysicsLinearVector.hh"
82#include "G4hNuclearStoppingModel.hh"
83#include "G4hBetheBlochModel.hh"
84#include "G4hParametrisedLossModel.hh"
85#include "G4QAOLowEnergyLoss.hh"
86#include "G4hIonEffChargeSquare.hh"
87#include "G4IonChuFluctuationModel.hh"
88#include "G4IonYangFluctuationModel.hh"
89#include "G4AtomicDeexcitation.hh"
90#include "G4MaterialCutsCouple.hh"
91#include <map>
92
93class G4VEMDataSet;
94class G4ShellVacancy;
95class G4VhShellCrossSection;
96
97class G4hLowEnergyIonisation : public G4hLowEnergyLoss
98{
99public: // With description
100 
101  G4hLowEnergyIonisation(const G4String& processName = "hLowEIoni"); 
102  // The ionisation process for hadrons/ions to be include in the
103  // UserPhysicsList
104
105  ~G4hLowEnergyIonisation();
106  // Destructor
107 
108  G4bool IsApplicable(const G4ParticleDefinition&);
109  // True for all charged hadrons/ions
110   
111  void BuildPhysicsTable(const G4ParticleDefinition& aParticleType) ;
112  // Build physics table during initialisation
113
114  G4double GetMeanFreePath(const G4Track& track,
115                                 G4double previousStepSize,
116                            enum G4ForceCondition* condition );
117  // Return MeanFreePath until delta-electron production
118 
119  void PrintInfoDefinition() const;
120  // Print out of the class parameters
121
122  void SetHighEnergyForProtonParametrisation(G4double energy) 
123                             {protonHighEnergy = energy;} ;
124  // Definition of the boundary proton energy. For higher energies
125  // Bethe-Bloch formula is used, for lower energies a parametrisation
126  // of the energy losses is performed. Default is 2 MeV.
127
128  void SetLowEnergyForProtonParametrisation(G4double energy) 
129                             {protonLowEnergy = energy;} ;
130  // Set of the boundary proton energy. For lower energies
131  // the Free Electron Gas model is used for the energy losses.
132  // Default is 1 keV.
133
134  void SetHighEnergyForAntiProtonParametrisation(G4double energy) 
135                             {antiProtonHighEnergy = energy;} ;
136  // Set of the boundary antiproton energy. For higher energies
137  // Bethe-Bloch formula is used, for lower energies parametrisation
138  // of the energy losses is performed. Default is 2 MeV.
139
140  void SetLowEnergyForAntiProtonParametrisation(G4double energy) 
141                              {antiProtonLowEnergy = energy;} ;
142  // Set of the boundary antiproton energy. For lower energies
143  // the Free Electron Gas model is used for the energy losses.
144  // Default is 1 keV.
145
146  G4double GetContinuousStepLimit(const G4Track& track,
147                                        G4double previousStepSize,
148                                        G4double currentMinimumStep,
149                                        G4double& currentSafety); 
150  // Calculation of the step limit due to ionisation losses
151
152  void SetElectronicStoppingPowerModel(const G4ParticleDefinition* aParticle,
153                                       const G4String& dedxTable);
154  // This method defines the electron ionisation parametrisation method
155  // via the name of the table. Default is "ICRU_49p".
156
157  void SetNuclearStoppingPowerModel(const G4String& dedxTable)
158                 {theNuclearTable = dedxTable; SetNuclearStoppingOn();};
159  // This method defines the nuclear ionisation parametrisation method
160  // via the name of the table. Default is "ICRU_49".
161
162  void SetNuclearStoppingOn() {nStopping = true;};
163  // This method switch on calculation of the nuclear stopping power.
164 
165  void SetNuclearStoppingOff() {nStopping = false;};
166  // This method switch off calculation of the nuclear stopping power.
167
168  void SetBarkasOn() {theBarkas = true;};
169  // This method switch on calculation of the Barkas and Bloch effects.
170
171  void SetBarkasOff() {theBarkas = false;};
172  // This method switch off calculation of the Barkas and Bloch effects.
173
174  void SetFluorescence(const G4bool val) {theFluo = val;};
175  // This method switch on/off simulation of the fluorescence of the media.
176
177  G4VParticleChange* AlongStepDoIt(const G4Track& trackData ,
178                                   const G4Step& stepData ) ;
179  // Function to determine total energy deposition on the step
180
181  G4VParticleChange* PostStepDoIt(const G4Track& track,
182                                  const G4Step& Step  ) ;
183  // Simulation of delta rays production.
184
185  G4double ComputeDEDX(const G4ParticleDefinition* aParticle,
186                       const G4MaterialCutsCouple* couple,
187                             G4double kineticEnergy);
188  // This method returns electronic dE/dx for protons or antiproton.
189
190  void SetCutForSecondaryPhotons(G4double cut);
191  // Set threshold energy for fluorescence
192
193  void SetCutForAugerElectrons(G4double cut);
194  // Set threshold energy for Auger electron production
195
196  void ActivateAugerElectronProduction(G4bool val);
197  // Set Auger electron production flag on/off
198
199
200protected:
201
202private:
203
204  void InitializeMe();
205
206  void InitializeParametrisation();
207
208  void BuildLossTable(const G4ParticleDefinition& aParticleType);
209
210  void BuildDataForFluorescence(const G4ParticleDefinition& aParticleType);
211
212  void BuildLambdaTable(const G4ParticleDefinition& aParticleType);
213
214  void SetProtonElectronicStoppingPowerModel(const G4String& dedxTable)
215                              {theProtonTable = dedxTable ;};
216  // This method defines the ionisation parametrisation method via its name
217
218  void SetAntiProtonElectronicStoppingPowerModel(const G4String& dedxTable)
219                              {theAntiProtonTable = dedxTable ;};
220
221  G4double ComputeMicroscopicCrossSection(
222                  const G4ParticleDefinition& aParticleType,
223                        G4double kineticEnergy,
224                        G4double atomicNumber,
225                        G4double deltaCutInEnergy) const;
226
227  G4double GetConstraints(const G4DynamicParticle* particle,
228                          const G4MaterialCutsCouple* couple);
229  // Function to determine StepLimit
230
231  G4double ProtonParametrisedDEDX(const G4MaterialCutsCouple* couple,
232                                        G4double kineticEnergy) const;
233
234  G4double AntiProtonParametrisedDEDX(const G4MaterialCutsCouple* couple,
235                                            G4double kineticEnergy) const;
236
237  G4double DeltaRaysEnergy(const G4MaterialCutsCouple* couple,
238                                 G4double kineticEnergy,
239                                 G4double particleMass) const;
240  // This method returns average energy loss due to delta-rays emission with
241  // energy higher than the cut energy for given material.
242
243  G4double BarkasTerm(const G4Material* material,
244                            G4double kineticEnergy) const;
245  // Function to compute the Barkas term for protons
246
247  G4double BlochTerm(const G4Material* material,
248                           G4double kineticEnergy,
249                           G4double cSquare) const;
250  // Function to compute the Bloch term for protons
251
252  G4double ElectronicLossFluctuation(const G4DynamicParticle* particle,
253                                     const G4MaterialCutsCouple* material,
254                                           G4double meanLoss,
255                                           G4double step) const;
256  // Function to sample electronic losses
257
258  std::vector<G4DynamicParticle*>* DeexciteAtom(const G4MaterialCutsCouple* couple,
259                                                  G4double incidentEnergy,
260                                                  G4double hMass,
261                                                  G4double eLoss);
262
263  G4int SelectRandomAtom(const G4MaterialCutsCouple* couple,
264                               G4double kineticEnergy) const;
265
266  // hide assignment operator
267  G4hLowEnergyIonisation & operator=(const G4hLowEnergyIonisation &right);
268  G4hLowEnergyIonisation(const G4hLowEnergyIonisation&);
269
270private:
271  //  private data members ...............................
272  G4VLowEnergyModel* theBetheBlochModel;
273  G4VLowEnergyModel* theProtonModel;
274  G4VLowEnergyModel* theAntiProtonModel;
275  G4VLowEnergyModel* theIonEffChargeModel;
276  G4VLowEnergyModel* theNuclearStoppingModel;
277  G4VLowEnergyModel* theIonChuFluctuationModel;
278  G4VLowEnergyModel* theIonYangFluctuationModel;
279  std::map<G4int,G4double,std::less<G4int> > totalCrossSectionMap;
280
281  // name of parametrisation table of electron stopping power
282  G4String theProtonTable;
283  G4String theAntiProtonTable;
284  G4String theNuclearTable;
285
286  // interval of parametrisation of electron stopping power
287  G4double protonLowEnergy;
288  G4double protonHighEnergy;
289  G4double antiProtonLowEnergy;
290  G4double antiProtonHighEnergy;
291
292  // flag of parametrisation of nucleus stopping power
293  G4bool nStopping;
294  G4bool theBarkas;
295
296  G4DataVector cutForDelta;
297  G4DataVector cutForGamma;
298  G4double minGammaEnergy;
299  G4double minElectronEnergy;
300  G4PhysicsTable* theMeanFreePathTable;
301
302  const G4double paramStepLimit; // parameter limits the step at low energy
303
304  G4double fdEdx;        // computed in GetContraints
305  G4double fRangeNow ;   //
306  G4double charge;       //
307  G4double chargeSquare; //
308  G4double initialMass;  // mass to calculate Lambda tables
309  G4double fBarkas;
310
311  G4AtomicDeexcitation deexcitationManager;
312  G4ShellVacancy* shellVacancy;
313  G4VhShellCrossSection* shellCS;
314  std::vector<G4VEMDataSet*> zFluoDataVector;
315  G4bool theFluo;
316  G4bool expFlag;
317};
318
319//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320
321inline G4double G4hLowEnergyIonisation::GetContinuousStepLimit(
322                                        const G4Track& track,
323                                              G4double,
324                                              G4double currentMinimumStep,
325                                              G4double&)
326{
327  G4double Step =
328    GetConstraints(track.GetDynamicParticle(),track.GetMaterialCutsCouple()) ;
329
330  if((Step>0.0)&&(Step<currentMinimumStep))
331     currentMinimumStep = Step ;
332
333  return Step ;
334}
335
336//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
337
338inline G4bool G4hLowEnergyIonisation::IsApplicable(
339                                const G4ParticleDefinition& particle)
340{
341   return(particle.GetPDGCharge() != 0.0
342       && particle.GetPDGMass() > proton_mass_c2*0.1);
343}
344
345//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
346
347#endif
348
349
350
351
352
353
354
355
Note: See TracBrowser for help on using the repository browser.