| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4AtomicDeexcitation.cc,v 1.11
|
|---|
| [1055] | 28 | // GEANT4 tag $Name: geant4-09-03-beta-cand-01 $
|
|---|
| [819] | 29 | //
|
|---|
| 30 | // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it)
|
|---|
| 31 | // Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
|
|---|
| 32 | //
|
|---|
| 33 | // History:
|
|---|
| 34 | // -----------
|
|---|
| 35 | //
|
|---|
| 36 | // 16 Sept 2001 First committed to cvs
|
|---|
| 37 | // 12 Sep 2003 Bug in auger production fixed
|
|---|
| 38 | //
|
|---|
| 39 | // -------------------------------------------------------------------
|
|---|
| 40 |
|
|---|
| 41 | #include "G4AtomicDeexcitation.hh"
|
|---|
| 42 | #include "Randomize.hh"
|
|---|
| 43 | #include "G4Gamma.hh"
|
|---|
| 44 | #include "G4Electron.hh"
|
|---|
| 45 | #include "G4AtomicTransitionManager.hh"
|
|---|
| 46 | #include "G4FluoTransition.hh"
|
|---|
| 47 |
|
|---|
| 48 | G4AtomicDeexcitation::G4AtomicDeexcitation():
|
|---|
| 49 | minGammaEnergy(100.*eV),
|
|---|
| 50 | minElectronEnergy(100.*eV),
|
|---|
| 51 | fAuger(false)
|
|---|
| 52 | {}
|
|---|
| 53 |
|
|---|
| 54 | G4AtomicDeexcitation::~G4AtomicDeexcitation()
|
|---|
| 55 | {}
|
|---|
| 56 |
|
|---|
| 57 | std::vector<G4DynamicParticle*>* G4AtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId)
|
|---|
| 58 | {
|
|---|
| 59 |
|
|---|
| 60 | std::vector<G4DynamicParticle*>* vectorOfParticles;
|
|---|
| 61 |
|
|---|
| 62 | vectorOfParticles = new std::vector<G4DynamicParticle*>;
|
|---|
| 63 | G4DynamicParticle* aParticle;
|
|---|
| 64 | G4int provShellId = 0;
|
|---|
| 65 | G4int counter = 0;
|
|---|
| 66 |
|
|---|
| 67 | // The aim of this loop is to generate more than one fluorecence photon
|
|---|
| 68 | // from the same ionizing event
|
|---|
| 69 | do
|
|---|
| 70 | {
|
|---|
| 71 | if (counter == 0)
|
|---|
| 72 | // First call to GenerateParticles(...):
|
|---|
| 73 | // givenShellId is given by the process
|
|---|
| 74 | {
|
|---|
| 75 | provShellId = SelectTypeOfTransition(Z, givenShellId);
|
|---|
| 76 |
|
|---|
| 77 | if ( provShellId >0)
|
|---|
| 78 | {
|
|---|
| 79 | aParticle = GenerateFluorescence(Z,givenShellId,provShellId);
|
|---|
| 80 | }
|
|---|
| 81 | else if ( provShellId == -1)
|
|---|
| 82 | {
|
|---|
| 83 | aParticle = GenerateAuger(Z, givenShellId);
|
|---|
| 84 | }
|
|---|
| 85 | else
|
|---|
| 86 | {
|
|---|
| 87 | G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it");
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 | else
|
|---|
| 91 | // Following calls to GenerateParticles(...):
|
|---|
| 92 | // newShellId is given by GenerateFluorescence(...)
|
|---|
| 93 | {
|
|---|
| 94 | provShellId = SelectTypeOfTransition(Z,newShellId);
|
|---|
| 95 | if (provShellId >0)
|
|---|
| 96 | {
|
|---|
| 97 | aParticle = GenerateFluorescence(Z,newShellId,provShellId);
|
|---|
| 98 | }
|
|---|
| 99 | else if ( provShellId == -1)
|
|---|
| 100 | {
|
|---|
| 101 | aParticle = GenerateAuger(Z, newShellId);
|
|---|
| 102 | }
|
|---|
| 103 | else
|
|---|
| 104 | {
|
|---|
| 105 | G4Exception("G4AtomicDeexcitation: starting shell uncorrect: check it");
|
|---|
| 106 | }
|
|---|
| 107 | }
|
|---|
| 108 | counter++;
|
|---|
| 109 | if (aParticle != 0) {vectorOfParticles->push_back(aParticle);}
|
|---|
| 110 | else {provShellId = -2;}
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| [1055] | 113 | // Look this in a particular way: only one auger emitted! // ????
|
|---|
| [819] | 114 | while (provShellId > -2);
|
|---|
| 115 |
|
|---|
| 116 | return vectorOfParticles;
|
|---|
| 117 | }
|
|---|
| 118 |
|
|---|
| 119 | G4int G4AtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
|
|---|
| 120 | {
|
|---|
| 121 | if (shellId <=0 )
|
|---|
| 122 | {G4Exception("G4AtomicDeexcitation: zero or negative shellId");}
|
|---|
| 123 |
|
|---|
| 124 | G4bool fluoTransitionFoundFlag = false;
|
|---|
| 125 |
|
|---|
| 126 | const G4AtomicTransitionManager* transitionManager =
|
|---|
| 127 | G4AtomicTransitionManager::Instance();
|
|---|
| 128 | G4int provShellId = -1;
|
|---|
| 129 | G4int shellNum = 0;
|
|---|
| 130 | G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
|
|---|
| 131 |
|
|---|
| 132 | const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1);
|
|---|
| 133 |
|
|---|
| 134 | // This loop gives shellNum the value of the index of shellId
|
|---|
| 135 | // in the vector storing the list of the shells reachable through
|
|---|
| 136 | // a radiative transition
|
|---|
| 137 | if ( shellId <= refShell->FinalShellId())
|
|---|
| 138 | {
|
|---|
| 139 | while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
|
|---|
| 140 | {
|
|---|
| 141 | if(shellNum ==maxNumOfShells-1)
|
|---|
| 142 | {
|
|---|
| 143 | break;
|
|---|
| 144 | }
|
|---|
| 145 | shellNum++;
|
|---|
| 146 | }
|
|---|
| 147 | G4int transProb = 0; //AM change 29/6/07 was 1
|
|---|
| 148 |
|
|---|
| 149 | G4double partialProb = G4UniformRand();
|
|---|
| 150 | G4double partSum = 0;
|
|---|
| 151 | const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);
|
|---|
| 152 | G4int trSize = (aShell->TransitionProbabilities()).size();
|
|---|
| 153 |
|
|---|
| 154 | // Loop over the shells wich can provide an electron for a
|
|---|
| 155 | // radiative transition towards shellId:
|
|---|
| 156 | // in every loop the partial sum of the first transProb shells
|
|---|
| 157 | // is calculated and compared with a random number [0,1].
|
|---|
| 158 | // If the partial sum is greater, the shell whose index is transProb
|
|---|
| 159 | // is chosen as the starting shell for a radiative transition
|
|---|
| 160 | // and its identity is returned
|
|---|
| 161 | // Else, terminateded the loop, -1 is returned
|
|---|
| 162 | while(transProb < trSize){
|
|---|
| 163 |
|
|---|
| 164 | partSum += aShell->TransitionProbability(transProb);
|
|---|
| 165 |
|
|---|
| 166 | if(partialProb <= partSum)
|
|---|
| 167 | {
|
|---|
| 168 | provShellId = aShell->OriginatingShellId(transProb);
|
|---|
| 169 | fluoTransitionFoundFlag = true;
|
|---|
| 170 |
|
|---|
| 171 | break;
|
|---|
| 172 | }
|
|---|
| 173 | transProb++;
|
|---|
| 174 | }
|
|---|
| 175 |
|
|---|
| 176 | // here provShellId is the right one or is -1.
|
|---|
| 177 | // if -1, the control is passed to the Auger generation part of the package
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 |
|
|---|
| 181 |
|
|---|
| 182 | else
|
|---|
| 183 | {
|
|---|
| 184 |
|
|---|
| 185 | provShellId = -1;
|
|---|
| 186 |
|
|---|
| 187 | }
|
|---|
| 188 | return provShellId;
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | G4DynamicParticle* G4AtomicDeexcitation::GenerateFluorescence(G4int Z,
|
|---|
| 192 | G4int shellId,
|
|---|
| 193 | G4int provShellId )
|
|---|
| 194 | {
|
|---|
| 195 |
|
|---|
| 196 |
|
|---|
| 197 | const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 198 | // G4int provenienceShell = provShellId;
|
|---|
| 199 |
|
|---|
| 200 | //isotropic angular distribution for the outcoming photon
|
|---|
| 201 | G4double newcosTh = 1.-2.*G4UniformRand();
|
|---|
| 202 | G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh);
|
|---|
| 203 | G4double newPhi = twopi*G4UniformRand();
|
|---|
| 204 |
|
|---|
| 205 | G4double xDir = newsinTh*std::sin(newPhi);
|
|---|
| 206 | G4double yDir = newsinTh*std::cos(newPhi);
|
|---|
| 207 | G4double zDir = newcosTh;
|
|---|
| 208 |
|
|---|
| 209 | G4ThreeVector newGammaDirection(xDir,yDir,zDir);
|
|---|
| 210 |
|
|---|
| 211 | G4int shellNum = 0;
|
|---|
| 212 | G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
|
|---|
| 213 |
|
|---|
| 214 | // find the index of the shell named shellId
|
|---|
| 215 | while (shellId != transitionManager->
|
|---|
| 216 | ReachableShell(Z,shellNum)->FinalShellId())
|
|---|
| 217 | {
|
|---|
| 218 | if(shellNum == maxNumOfShells-1)
|
|---|
| 219 | {
|
|---|
| 220 | break;
|
|---|
| 221 | }
|
|---|
| 222 | shellNum++;
|
|---|
| 223 | }
|
|---|
| 224 | // number of shell from wich an electron can reach shellId
|
|---|
| 225 | size_t transitionSize = transitionManager->
|
|---|
| 226 | ReachableShell(Z,shellNum)->OriginatingShellIds().size();
|
|---|
| 227 |
|
|---|
| 228 | size_t index = 0;
|
|---|
| 229 |
|
|---|
| 230 | // find the index of the shell named provShellId in the vector
|
|---|
| 231 | // storing the shells from which shellId can be reached
|
|---|
| 232 | while (provShellId != transitionManager->
|
|---|
| 233 | ReachableShell(Z,shellNum)->OriginatingShellId(index))
|
|---|
| 234 | {
|
|---|
| 235 | if(index == transitionSize-1)
|
|---|
| 236 | {
|
|---|
| 237 | break;
|
|---|
| 238 | }
|
|---|
| 239 | index++;
|
|---|
| 240 | }
|
|---|
| 241 | // energy of the gamma leaving provShellId for shellId
|
|---|
| 242 | G4double transitionEnergy = transitionManager->
|
|---|
| 243 | ReachableShell(Z,shellNum)->TransitionEnergy(index);
|
|---|
| 244 |
|
|---|
| 245 | // This is the shell where the new vacancy is: it is the same
|
|---|
| 246 | // shell where the electron came from
|
|---|
| 247 | newShellId = transitionManager->
|
|---|
| 248 | ReachableShell(Z,shellNum)->OriginatingShellId(index);
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(),
|
|---|
| 252 | newGammaDirection,
|
|---|
| 253 | transitionEnergy);
|
|---|
| 254 | return newPart;
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | G4DynamicParticle* G4AtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
|
|---|
| 258 | {
|
|---|
| 259 | if(!fAuger) return 0;
|
|---|
| 260 |
|
|---|
| 261 |
|
|---|
| 262 | const G4AtomicTransitionManager* transitionManager =
|
|---|
| 263 | G4AtomicTransitionManager::Instance();
|
|---|
| 264 |
|
|---|
| 265 |
|
|---|
| 266 |
|
|---|
| 267 | if (shellId <=0 )
|
|---|
| 268 | {G4Exception("G4AtomicDeexcitation: zero or negative shellId");}
|
|---|
| 269 |
|
|---|
| 270 | // G4int provShellId = -1;
|
|---|
| 271 | G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);
|
|---|
| 272 |
|
|---|
| 273 | const G4AugerTransition* refAugerTransition =
|
|---|
| 274 | transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
|
|---|
| 275 |
|
|---|
| 276 |
|
|---|
| 277 | // This loop gives to shellNum the value of the index of shellId
|
|---|
| 278 | // in the vector storing the list of the vacancies in the variuos shells
|
|---|
| 279 | // that can originate a NON-radiative transition
|
|---|
| 280 |
|
|---|
| 281 | // ---- MGP ---- Next line commented out to remove compilation warning
|
|---|
| 282 | // G4int p = refAugerTransition->FinalShellId();
|
|---|
| 283 |
|
|---|
| 284 | G4int shellNum = 0;
|
|---|
| 285 |
|
|---|
| 286 |
|
|---|
| 287 | if ( shellId <= refAugerTransition->FinalShellId() )
|
|---|
| 288 | //"FinalShellId" is final from the point of view of the elctron who makes the transition,
|
|---|
| 289 | // being the Id of the shell in which there is a vacancy
|
|---|
| 290 | {
|
|---|
| 291 | G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
|
|---|
| 292 | if (shellId != pippo ) {
|
|---|
| 293 | do {
|
|---|
| 294 | shellNum++;
|
|---|
| 295 | if(shellNum == maxNumOfShells)
|
|---|
| 296 | {
|
|---|
| 297 | // G4cout << "G4AtomicDeexcitation warning: No Auger transition found" << G4endl;
|
|---|
| 298 | // G4cout << "Absorbed enrgy deposited locally" << G4endl;
|
|---|
| [1055] | 299 | G4Exception("G4AtomicDeexcitation: No Auger transition found");
|
|---|
| 300 | return 0;
|
|---|
| [819] | 301 | }
|
|---|
| 302 | }
|
|---|
| 303 | while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ;
|
|---|
| 304 | }
|
|---|
| 305 | /* {
|
|---|
| 306 |
|
|---|
| 307 | if(shellNum == maxNumOfShells-1)
|
|---|
| 308 | {
|
|---|
| 309 | G4Exception("G4AtomicDeexcitation: No Auger tramsition found");
|
|---|
| 310 | }
|
|---|
| 311 | shellNum++;
|
|---|
| 312 | }*/
|
|---|
| 313 |
|
|---|
| 314 |
|
|---|
| 315 |
|
|---|
| 316 |
|
|---|
| 317 | // Now we have that shellnum is the shellIndex of the shell named ShellId
|
|---|
| 318 |
|
|---|
| 319 | // G4cout << " the index of the shell is: "<<shellNum<<G4endl;
|
|---|
| 320 |
|
|---|
| 321 | // But we have now to select two shells: one for the transition,
|
|---|
| 322 | // and another for the auger emission.
|
|---|
| 323 |
|
|---|
| 324 | G4int transitionLoopShellIndex = 0;
|
|---|
| 325 | G4double partSum = 0;
|
|---|
| 326 | const G4AugerTransition* anAugerTransition =
|
|---|
| 327 | transitionManager->ReachableAugerShell(Z,shellNum);
|
|---|
| 328 |
|
|---|
| 329 | // G4cout << " corresponding to the ID: "<< anAugerTransition->FinalShellId() << G4endl;
|
|---|
| 330 |
|
|---|
| 331 |
|
|---|
| 332 | G4int transitionSize =
|
|---|
| 333 | (anAugerTransition->TransitionOriginatingShellIds())->size();
|
|---|
| 334 | while (transitionLoopShellIndex < transitionSize) {
|
|---|
| 335 |
|
|---|
| 336 | std::vector<G4int>::const_iterator pos =
|
|---|
| 337 | anAugerTransition->TransitionOriginatingShellIds()->begin();
|
|---|
| 338 |
|
|---|
| 339 | G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
|
|---|
| 340 | G4int numberOfPossibleAuger =
|
|---|
| 341 | (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
|
|---|
| 342 | G4int augerIndex = 0;
|
|---|
| 343 | // G4int partSum2 = 0;
|
|---|
| 344 |
|
|---|
| 345 |
|
|---|
| 346 | if (augerIndex < numberOfPossibleAuger) {
|
|---|
| 347 |
|
|---|
| 348 | do
|
|---|
| 349 | {
|
|---|
| 350 | G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex,
|
|---|
| 351 | transitionLoopShellId);
|
|---|
| 352 | partSum += thisProb;
|
|---|
| 353 | augerIndex++;
|
|---|
| 354 |
|
|---|
| 355 | } while (augerIndex < numberOfPossibleAuger);
|
|---|
| 356 | }
|
|---|
| 357 | transitionLoopShellIndex++;
|
|---|
| 358 | }
|
|---|
| 359 |
|
|---|
| 360 |
|
|---|
| 361 |
|
|---|
| 362 | // Now we have the entire probability of an auger transition for the vacancy
|
|---|
| 363 | // located in shellNum (index of shellId)
|
|---|
| 364 |
|
|---|
| 365 | // AM *********************** F I X E D **************************** AM
|
|---|
| 366 | // Here we duplicate the previous loop, this time looking to the sum of the probabilities
|
|---|
| 367 | // to be under the random number shoot by G4 UniformRdandom. This could have been done in the
|
|---|
| 368 | // previuos loop, while integrating the probabilities. There is a bug that will be fixed
|
|---|
| 369 | // 5 minutes from now: a line:
|
|---|
| 370 | // G4int numberOfPossibleAuger = (anAugerTransition->
|
|---|
| 371 | // AugerTransitionProbabilities(transitionLoopShellId))->size();
|
|---|
| 372 | // to be inserted.
|
|---|
| 373 | // AM *********************** F I X E D **************************** AM
|
|---|
| 374 |
|
|---|
| 375 | // Remains to get the same result with a single loop.
|
|---|
| 376 |
|
|---|
| 377 | // AM *********************** F I X E D **************************** AM
|
|---|
| 378 | // Another Bug: in EADL Auger Transition are normalized to all the transitions deriving from
|
|---|
| 379 | // a vacancy in one shell, but not all of these are present in data tables. So if a transition
|
|---|
| 380 | // doesn't occur in the main one a local energy deposition must occur, instead of (like now)
|
|---|
| 381 | // generating the last transition present in EADL data.
|
|---|
| 382 | // AM *********************** F I X E D **************************** AM
|
|---|
| 383 |
|
|---|
| 384 |
|
|---|
| 385 | G4double totalVacancyAugerProbability = partSum;
|
|---|
| 386 |
|
|---|
| 387 |
|
|---|
| 388 | //And now we start to select the right auger transition and emission
|
|---|
| 389 | G4int transitionRandomShellIndex = 0;
|
|---|
| 390 | G4int transitionRandomShellId = 1;
|
|---|
| 391 | G4int augerIndex = 0;
|
|---|
| 392 | partSum = 0;
|
|---|
| 393 | G4double partialProb = G4UniformRand();
|
|---|
| 394 | // G4int augerOriginatingShellId = 0;
|
|---|
| 395 |
|
|---|
| [1055] | 396 | G4int numberOfPossibleAuger = 0;
|
|---|
| 397 | numberOfPossibleAuger = anAugerTransition->AugerTransitionProbabilities(transitionRandomShellId)->size();
|
|---|
| 398 |
|
|---|
| 399 |
|
|---|
| [819] | 400 | G4bool foundFlag = false;
|
|---|
| 401 |
|
|---|
| 402 | while (transitionRandomShellIndex < transitionSize) {
|
|---|
| 403 |
|
|---|
| 404 | std::vector<G4int>::const_iterator pos =
|
|---|
| 405 | anAugerTransition->TransitionOriginatingShellIds()->begin();
|
|---|
| 406 |
|
|---|
| 407 | transitionRandomShellId = *(pos+transitionRandomShellIndex);
|
|---|
| 408 |
|
|---|
| 409 | augerIndex = 0;
|
|---|
| 410 | numberOfPossibleAuger = (anAugerTransition->
|
|---|
| 411 | AugerTransitionProbabilities(transitionRandomShellId))->size();
|
|---|
| 412 |
|
|---|
| 413 | while (augerIndex < numberOfPossibleAuger) {
|
|---|
| 414 | G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex,
|
|---|
| 415 | transitionRandomShellId);
|
|---|
| 416 |
|
|---|
| 417 | partSum += thisProb;
|
|---|
| 418 |
|
|---|
| 419 | if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
|
|---|
| 420 | foundFlag = true;
|
|---|
| 421 | break;
|
|---|
| 422 | }
|
|---|
| 423 | augerIndex++;
|
|---|
| 424 | }
|
|---|
| 425 | if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
|
|---|
| 426 | transitionRandomShellIndex++;
|
|---|
| 427 | }
|
|---|
| 428 |
|
|---|
| 429 | // Now we have the index of the shell from wich comes the auger electron (augerIndex),
|
|---|
| 430 | // and the id of the shell, from which the transition e- come (transitionRandomShellid)
|
|---|
| 431 | // If no Transition has been found, 0 is returned.
|
|---|
| 432 |
|
|---|
| 433 | if (!foundFlag) {return 0;}
|
|---|
| 434 |
|
|---|
| 435 | // Isotropic angular distribution for the outcoming e-
|
|---|
| 436 | G4double newcosTh = 1.-2.*G4UniformRand();
|
|---|
| 437 | G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh);
|
|---|
| 438 | G4double newPhi = twopi*G4UniformRand();
|
|---|
| 439 |
|
|---|
| 440 | G4double xDir = newsinTh*std::sin(newPhi);
|
|---|
| 441 | G4double yDir = newsinTh*std::cos(newPhi);
|
|---|
| 442 | G4double zDir = newcosTh;
|
|---|
| 443 |
|
|---|
| 444 | G4ThreeVector newElectronDirection(xDir,yDir,zDir);
|
|---|
| 445 |
|
|---|
| 446 | // energy of the auger electron emitted
|
|---|
| 447 |
|
|---|
| 448 |
|
|---|
| 449 | G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
|
|---|
| 450 | /*
|
|---|
| 451 | G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl;
|
|---|
| 452 | G4cout << "augerIndex: " << augerIndex << G4endl;
|
|---|
| 453 | G4cout << "transitionShellId: " << transitionRandomShellId << G4endl;
|
|---|
| 454 | */
|
|---|
| 455 |
|
|---|
| 456 | // This is the shell where the new vacancy is: it is the same
|
|---|
| 457 | // shell where the electron came from
|
|---|
| 458 | newShellId = transitionRandomShellId;
|
|---|
| 459 |
|
|---|
| 460 |
|
|---|
| 461 | G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(),
|
|---|
| 462 | newElectronDirection,
|
|---|
| 463 | transitionEnergy);
|
|---|
| 464 | return newPart;
|
|---|
| 465 |
|
|---|
| 466 | }
|
|---|
| 467 | else
|
|---|
| 468 | {
|
|---|
| 469 | //G4Exception("G4AtomicDeexcitation: no auger transition found");
|
|---|
| 470 | return 0;
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 | }
|
|---|
| 474 |
|
|---|
| 475 | void G4AtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
|
|---|
| 476 | {
|
|---|
| 477 | minGammaEnergy = cut;
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 | void G4AtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
|
|---|
| 481 | {
|
|---|
| 482 | minElectronEnergy = cut;
|
|---|
| 483 | }
|
|---|
| 484 |
|
|---|
| 485 | void G4AtomicDeexcitation::ActivateAugerElectronProduction(G4bool val)
|
|---|
| 486 | {
|
|---|
| 487 | fAuger = val;
|
|---|
| 488 | }
|
|---|
| 489 |
|
|---|
| 490 |
|
|---|
| 491 |
|
|---|
| 492 |
|
|---|
| 493 |
|
|---|
| 494 |
|
|---|
| 495 |
|
|---|