source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNABornIonisationModel.cc@ 1066

Last change on this file since 1066 was 1058, checked in by garnier, 17 years ago

file release beta

File size: 21.9 KB
Line 
1// ********************************************************************
2// * License and Disclaimer *
3// * *
4// * The Geant4 software is copyright of the Copyright Holders of *
5// * the Geant4 Collaboration. It is provided under the terms and *
6// * conditions of the Geant4 Software License, included in the file *
7// * LICENSE and available at http://cern.ch/geant4/license . These *
8// * include a list of copyright holders. *
9// * *
10// * Neither the authors of this software system, nor their employing *
11// * institutes,nor the agencies providing financial support for this *
12// * work make any representation or warranty, express or implied, *
13// * regarding this software system or assume any liability for its *
14// * use. Please see the license in the file LICENSE and URL above *
15// * for the full disclaimer and the limitation of liability. *
16// * *
17// * This code implementation is the result of the scientific and *
18// * technical work of the GEANT4 collaboration. *
19// * By using, copying, modifying or distributing the software (or *
20// * any work based on the software) you agree to acknowledge its *
21// * use in resulting scientific publications, and indicate your *
22// * acceptance of all terms of the Geant4 Software license. *
23// ********************************************************************
24//
25// $Id: G4DNABornIonisationModel.cc,v 1.4 2009/02/16 11:00:11 sincerti Exp $
26// GEANT4 tag $Name: geant4-09-03-beta-cand-01 $
27//
28
29#include "G4DNABornIonisationModel.hh"
30
31//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
32
33using namespace std;
34
35//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
36
37G4DNABornIonisationModel::G4DNABornIonisationModel(const G4ParticleDefinition*,
38 const G4String& nam)
39:G4VEmModel(nam),isInitialised(false)
40{
41 verboseLevel= 0;
42 // Verbosity scale:
43 // 0 = nothing
44 // 1 = warning for energy non-conservation
45 // 2 = details of energy budget
46 // 3 = calculation of cross sections, file openings, sampling of atoms
47 // 4 = entering in methods
48
49 G4cout << "Born ionisation model is constructed " << G4endl;
50}
51
52//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
53
54G4DNABornIonisationModel::~G4DNABornIonisationModel()
55{
56 // Cross section
57
58 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
59 for (pos = tableData.begin(); pos != tableData.end(); ++pos)
60 {
61 G4DNACrossSectionDataSet* table = pos->second;
62 delete table;
63 }
64
65 // Final state
66
67 eVecm.clear();
68 pVecm.clear();
69
70}
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
73
74void G4DNABornIonisationModel::Initialise(const G4ParticleDefinition* particle,
75 const G4DataVector& /*cuts*/)
76{
77
78 if (verboseLevel > 3)
79 G4cout << "Calling G4DNABornIonisationModel::Initialise()" << G4endl;
80
81 // Energy limits
82
83 G4String fileElectron("dna/sigma_ionisation_e_born");
84 G4String fileProton("dna/sigma_ionisation_p_born");
85
86 G4ParticleDefinition* electronDef = G4Electron::ElectronDefinition();
87 G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
88
89 G4String electron;
90 G4String proton;
91
92 G4double scaleFactor = (1.e-22 / 3.343) * m*m;
93
94 char *path = getenv("G4LEDATA");
95
96 if (electronDef != 0)
97 {
98 electron = electronDef->GetParticleName();
99
100 tableFile[electron] = fileElectron;
101
102 lowEnergyLimit[electron] = 12.61 * eV;
103 highEnergyLimit[electron] = 30. * keV;
104
105 // Cross section
106
107 G4DNACrossSectionDataSet* tableE = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor );
108 tableE->LoadData(fileElectron);
109
110 tableData[electron] = tableE;
111
112 // Final state
113
114 std::ostringstream eFullFileName;
115 eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat";
116 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
117
118 if (!eDiffCrossSection)
119 {
120 G4Exception("G4DNABornIonisationModel::ERROR OPENING electron DATA FILE");
121 }
122
123 eTdummyVec.push_back(0.);
124 while(!eDiffCrossSection.eof())
125 {
126 double tDummy;
127 double eDummy;
128 eDiffCrossSection>>tDummy>>eDummy;
129 if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy);
130 for (int j=0; j<5; j++)
131 {
132 eDiffCrossSection>>eDiffCrossSectionData[j][tDummy][eDummy];
133
134 // SI - only if eof is not reached !
135 if (!eDiffCrossSection.eof()) eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
136
137 eVecm[tDummy].push_back(eDummy);
138
139 }
140 }
141
142 //
143 }
144 else
145 {
146 G4Exception("G4DNABornIonisationModel::Initialise(): electron is not defined");
147 }
148
149 if (protonDef != 0)
150 {
151 proton = protonDef->GetParticleName();
152
153 tableFile[proton] = fileProton;
154
155 lowEnergyLimit[proton] = 500. * keV;
156 highEnergyLimit[proton] = 10. * MeV;
157
158 // Cross section
159
160 G4DNACrossSectionDataSet* tableP = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor );
161 tableP->LoadData(fileProton);
162
163 tableData[proton] = tableP;
164
165 // Final state
166
167 std::ostringstream pFullFileName;
168 pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat";
169 std::ifstream pDiffCrossSection(pFullFileName.str().c_str());
170
171 if (!pDiffCrossSection)
172 {
173 G4Exception("G4DNABornIonisationModel::ERROR OPENING proton DATA FILE");
174 }
175
176 pTdummyVec.push_back(0.);
177 while(!pDiffCrossSection.eof())
178 {
179 double tDummy;
180 double eDummy;
181 pDiffCrossSection>>tDummy>>eDummy;
182 if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy);
183 for (int j=0; j<5; j++)
184 {
185 pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy];
186
187 // SI - only if eof is not reached !
188 if (!pDiffCrossSection.eof()) pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
189
190 pVecm[tDummy].push_back(eDummy);
191 }
192 }
193
194 }
195 else
196 {
197 G4Exception("G4DNABornIonisationModel::Initialise(): proton is not defined");
198 }
199
200 if (particle==electronDef)
201 {
202 SetLowEnergyLimit(lowEnergyLimit[electron]);
203 SetHighEnergyLimit(highEnergyLimit[electron]);
204 }
205
206 if (particle==protonDef)
207 {
208 SetLowEnergyLimit(lowEnergyLimit[proton]);
209 SetHighEnergyLimit(highEnergyLimit[proton]);
210 }
211
212 G4cout << "Born ionisation model is initialized " << G4endl
213 << "Energy range: "
214 << LowEnergyLimit() / eV << " eV - "
215 << HighEnergyLimit() / keV << " keV for "
216 << particle->GetParticleName()
217 << G4endl;
218
219 //
220
221 if(!isInitialised)
222 {
223 isInitialised = true;
224
225 if(pParticleChange)
226 fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
227 else
228 fParticleChangeForGamma = new G4ParticleChangeForGamma();
229 }
230
231 // InitialiseElementSelectors(particle,cuts);
232
233 // Test if water material
234
235 flagMaterialIsWater= false;
236 densityWater = 0;
237
238 const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
239
240 if(theCoupleTable)
241 {
242 G4int numOfCouples = theCoupleTable->GetTableSize();
243
244 if(numOfCouples>0)
245 {
246 for (G4int i=0; i<numOfCouples; i++)
247 {
248 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
249 const G4Material* material = couple->GetMaterial();
250
251 size_t j = material->GetNumberOfElements();
252 while (j>0)
253 {
254 j--;
255 const G4Element* element(material->GetElement(j));
256 if (element->GetZ() == 8.)
257 {
258 G4double density = material->GetAtomicNumDensityVector()[j];
259 if (density > 0.)
260 {
261 flagMaterialIsWater = true;
262 densityWater = density;
263
264 if (verboseLevel > 3)
265 G4cout << "Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
266 }
267 }
268 }
269
270 }
271 } // if(numOfCouples>0)
272
273 } // if (theCoupleTable)
274
275}
276
277//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
278
279G4double G4DNABornIonisationModel::CrossSectionPerVolume(const G4Material*,
280 const G4ParticleDefinition* particleDefinition,
281 G4double ekin,
282 G4double,
283 G4double)
284{
285 if (verboseLevel > 3)
286 G4cout << "Calling CrossSectionPerVolume() of G4DNABornIonisationModel" << G4endl;
287
288 if (
289 particleDefinition != G4Proton::ProtonDefinition()
290 &&
291 particleDefinition != G4Electron::ElectronDefinition()
292 )
293
294 return 0;
295
296 // Calculate total cross section for model
297
298 G4double lowLim = 0;
299 G4double highLim = 0;
300 G4double sigma=0;
301
302 if (flagMaterialIsWater)
303 {
304 const G4String& particleName = particleDefinition->GetParticleName();
305
306 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
307 pos1 = lowEnergyLimit.find(particleName);
308 if (pos1 != lowEnergyLimit.end())
309 {
310 lowLim = pos1->second;
311 }
312
313 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
314 pos2 = highEnergyLimit.find(particleName);
315 if (pos2 != highEnergyLimit.end())
316 {
317 highLim = pos2->second;
318 }
319
320 if (ekin >= lowLim && ekin < highLim)
321 {
322 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
323 pos = tableData.find(particleName);
324
325 if (pos != tableData.end())
326 {
327 G4DNACrossSectionDataSet* table = pos->second;
328 if (table != 0)
329 {
330 sigma = table->FindValue(ekin);
331 }
332 }
333 else
334 {
335 G4Exception("G4DNABornIonisationModel::CrossSectionPerVolume: attempting to calculate cross section for wrong particle");
336 }
337 }
338
339 if (verboseLevel > 3)
340 {
341 G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl;
342 G4cout << " - Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
343 G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*densityWater/(1./cm) << G4endl;
344 }
345
346 } // if (waterMaterial)
347
348 return sigma*densityWater;
349
350}
351
352//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
353
354void G4DNABornIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
355 const G4MaterialCutsCouple* /*couple*/,
356 const G4DynamicParticle* particle,
357 G4double,
358 G4double)
359{
360
361 if (verboseLevel > 3)
362 G4cout << "Calling SampleSecondaries() of G4DNABornIonisationModel" << G4endl;
363
364 G4double lowLim = 0;
365 G4double highLim = 0;
366
367 G4double k = particle->GetKineticEnergy();
368
369 const G4String& particleName = particle->GetDefinition()->GetParticleName();
370
371 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
372 pos1 = lowEnergyLimit.find(particleName);
373
374 if (pos1 != lowEnergyLimit.end())
375 {
376 lowLim = pos1->second;
377 }
378
379 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
380 pos2 = highEnergyLimit.find(particleName);
381
382 if (pos2 != highEnergyLimit.end())
383 {
384 highLim = pos2->second;
385 }
386
387 if (k >= lowLim && k < highLim)
388 {
389 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
390 G4double particleMass = particle->GetDefinition()->GetPDGMass();
391 G4double totalEnergy = k + particleMass;
392 G4double pSquare = k * (totalEnergy + particleMass);
393 G4double totalMomentum = std::sqrt(pSquare);
394
395 G4int ionizationShell = RandomSelect(k,particleName);
396
397 G4double secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
398
399 G4double bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
400
401 G4double cosTheta = 0.;
402 G4double phi = 0.;
403 RandomizeEjectedElectronDirection(particle->GetDefinition(), k,secondaryKinetic, cosTheta, phi);
404
405 G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
406 G4double dirX = sinTheta*std::cos(phi);
407 G4double dirY = sinTheta*std::sin(phi);
408 G4double dirZ = cosTheta;
409 G4ThreeVector deltaDirection(dirX,dirY,dirZ);
410 deltaDirection.rotateUz(primaryDirection);
411
412 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
413
414 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
415 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
416 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
417 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
418 finalPx /= finalMomentum;
419 finalPy /= finalMomentum;
420 finalPz /= finalMomentum;
421
422 G4ThreeVector direction;
423 direction.set(finalPx,finalPy,finalPz);
424
425 fParticleChangeForGamma->ProposeMomentumDirection(direction.unit()) ;
426 fParticleChangeForGamma->SetProposedKineticEnergy(k-bindingEnergy-secondaryKinetic);
427 fParticleChangeForGamma->ProposeLocalEnergyDeposit(bindingEnergy);
428
429 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic) ;
430 fvect->push_back(dp);
431 }
432
433}
434
435//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
436
437G4double G4DNABornIonisationModel::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
438G4double k, G4int shell)
439{
440 if (particleDefinition == G4Electron::ElectronDefinition())
441 {
442 G4double maximumEnergyTransfer=0.;
443 if ((k+waterStructure.IonisationEnergy(shell))/2. > k) maximumEnergyTransfer=k;
444 else maximumEnergyTransfer = (k+waterStructure.IonisationEnergy(shell))/2.;
445
446 G4double crossSectionMaximum = 0.;
447 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
448 {
449 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
450 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
451 }
452
453 G4double secondaryElectronKineticEnergy=0.;
454 do
455 {
456 secondaryElectronKineticEnergy = G4UniformRand() * (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
457 } while(G4UniformRand()*crossSectionMaximum >
458 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
459
460 return secondaryElectronKineticEnergy;
461
462 }
463
464 if (particleDefinition == G4Proton::ProtonDefinition())
465 {
466 G4double maximumKineticEnergyTransfer = 4.* (electron_mass_c2 / proton_mass_c2) * k - (waterStructure.IonisationEnergy(shell));
467
468 G4double crossSectionMaximum = 0.;
469 for (G4double value = waterStructure.IonisationEnergy(shell);
470 value<=4.*waterStructure.IonisationEnergy(shell) ;
471 value+=0.1*eV)
472 {
473 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
474 if (differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
475 }
476
477 G4double secondaryElectronKineticEnergy = 0.;
478 do
479 {
480 secondaryElectronKineticEnergy = G4UniformRand() * maximumKineticEnergyTransfer;
481 } while(G4UniformRand()*crossSectionMaximum >=
482 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
483
484 return secondaryElectronKineticEnergy;
485 }
486
487 return 0;
488}
489
490//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
491
492void G4DNABornIonisationModel::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
493 G4double k,
494 G4double secKinetic,
495 G4double & cosTheta,
496 G4double & phi )
497{
498 if (particleDefinition == G4Electron::ElectronDefinition())
499 {
500 phi = twopi * G4UniformRand();
501 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
502 else if (secKinetic <= 200.*eV)
503 {
504 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
505 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
506 }
507 else
508 {
509 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
510 cosTheta = std::sqrt(1.-sin2O);
511 }
512 }
513
514 if (particleDefinition == G4Proton::ProtonDefinition())
515 {
516 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
517 phi = twopi * G4UniformRand();
518 cosTheta = std::sqrt(secKinetic / maxSecKinetic);
519 }
520}
521
522//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
523
524double G4DNABornIonisationModel::DifferentialCrossSection(G4ParticleDefinition * particleDefinition,
525 G4double k,
526 G4double energyTransfer,
527 G4int ionizationLevelIndex)
528{
529 G4double sigma = 0.;
530
531 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex))
532 {
533 G4double valueT1 = 0;
534 G4double valueT2 = 0;
535 G4double valueE21 = 0;
536 G4double valueE22 = 0;
537 G4double valueE12 = 0;
538 G4double valueE11 = 0;
539
540 G4double xs11 = 0;
541 G4double xs12 = 0;
542 G4double xs21 = 0;
543 G4double xs22 = 0;
544
545 if (particleDefinition == G4Electron::ElectronDefinition())
546 {
547 // k should be in eV and energy transfer eV also
548
549 std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
550
551 std::vector<double>::iterator t1 = t2-1;
552
553 // SI : the following condition avoids situations where energyTransfer >last vector element
554 if (energyTransfer <= eVecm[(*t1)].back())
555 {
556 std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), energyTransfer);
557 std::vector<double>::iterator e11 = e12-1;
558
559 std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), energyTransfer);
560 std::vector<double>::iterator e21 = e22-1;
561
562 valueT1 =*t1;
563 valueT2 =*t2;
564 valueE21 =*e21;
565 valueE22 =*e22;
566 valueE12 =*e12;
567 valueE11 =*e11;
568
569 xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
570 xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
571 xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
572 xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
573 }
574
575 }
576
577 if (particleDefinition == G4Proton::ProtonDefinition())
578 {
579 // k should be in eV and energy transfer eV also
580 std::vector<double>::iterator t2 = std::upper_bound(pTdummyVec.begin(),pTdummyVec.end(), k);
581 std::vector<double>::iterator t1 = t2-1;
582
583 std::vector<double>::iterator e12 = std::upper_bound(pVecm[(*t1)].begin(),pVecm[(*t1)].end(), energyTransfer);
584 std::vector<double>::iterator e11 = e12-1;
585
586 std::vector<double>::iterator e22 = std::upper_bound(pVecm[(*t2)].begin(),pVecm[(*t2)].end(), energyTransfer);
587 std::vector<double>::iterator e21 = e22-1;
588
589 valueT1 =*t1;
590 valueT2 =*t2;
591 valueE21 =*e21;
592 valueE22 =*e22;
593 valueE12 =*e12;
594 valueE11 =*e11;
595
596 xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
597 xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
598 xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
599 xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
600
601 }
602
603 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
604 if (xsProduct != 0.)
605 {
606 sigma = QuadInterpolator( valueE11, valueE12,
607 valueE21, valueE22,
608 xs11, xs12,
609 xs21, xs22,
610 valueT1, valueT2,
611 k, energyTransfer);
612 }
613
614 }
615
616 return sigma;
617}
618
619//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
620
621G4double G4DNABornIonisationModel::LogLogInterpolate(G4double e1,
622 G4double e2,
623 G4double e,
624 G4double xs1,
625 G4double xs2)
626{
627 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
628 G4double b = std::log10(xs2) - a*std::log10(e2);
629 G4double sigma = a*std::log10(e) + b;
630 G4double value = (std::pow(10.,sigma));
631 return value;
632}
633
634//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
635
636G4double G4DNABornIonisationModel::QuadInterpolator(G4double e11, G4double e12,
637 G4double e21, G4double e22,
638 G4double xs11, G4double xs12,
639 G4double xs21, G4double xs22,
640 G4double t1, G4double t2,
641 G4double t, G4double e)
642{
643 G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
644 G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
645 G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
646 return value;
647}
648
649//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
650
651G4int G4DNABornIonisationModel::RandomSelect(G4double k, const G4String& particle )
652{
653 G4int level = 0;
654
655 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
656 pos = tableData.find(particle);
657
658 if (pos != tableData.end())
659 {
660 G4DNACrossSectionDataSet* table = pos->second;
661
662 if (table != 0)
663 {
664 G4double* valuesBuffer = new G4double[table->NumberOfComponents()];
665 const size_t n(table->NumberOfComponents());
666 size_t i(n);
667 G4double value = 0.;
668
669 while (i>0)
670 {
671 i--;
672 valuesBuffer[i] = table->GetComponent(i)->FindValue(k);
673 value += valuesBuffer[i];
674 }
675
676 value *= G4UniformRand();
677
678 i = n;
679
680 while (i > 0)
681 {
682 i--;
683
684 if (valuesBuffer[i] > value)
685 {
686 delete[] valuesBuffer;
687 return i;
688 }
689 value -= valuesBuffer[i];
690 }
691
692 if (valuesBuffer) delete[] valuesBuffer;
693
694 }
695 }
696 else
697 {
698 G4Exception("G4DNABornIonisationModel::RandomSelect attempting to calculate cross section for wrong particle");
699 }
700
701 return level;
702}
703
Note: See TracBrowser for help on using the repository browser.