source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNABornIonisationModel.cc@ 1201

Last change on this file since 1201 was 1196, checked in by garnier, 16 years ago

update CVS release candidate geant4.9.3.01

File size: 23.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4DNABornIonisationModel.cc,v 1.14 2009/11/12 03:08:58 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-03-cand-01 $
28//
29
30#include "G4DNABornIonisationModel.hh"
31//#include "G4DynamicMolecule.hh"
32
33//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
34
35using namespace std;
36
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39G4DNABornIonisationModel::G4DNABornIonisationModel(const G4ParticleDefinition*,
40 const G4String& nam)
41:G4VEmModel(nam),isInitialised(false)
42{
43 verboseLevel= 0;
44 // Verbosity scale:
45 // 0 = nothing
46 // 1 = warning for energy non-conservation
47 // 2 = details of energy budget
48 // 3 = calculation of cross sections, file openings, sampling of atoms
49 // 4 = entering in methods
50
51 if( verboseLevel>0 )
52 {
53 G4cout << "Born ionisation model is constructed " << G4endl;
54 }
55}
56
57//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
58
59G4DNABornIonisationModel::~G4DNABornIonisationModel()
60{
61 // Cross section
62
63 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
64 for (pos = tableData.begin(); pos != tableData.end(); ++pos)
65 {
66 G4DNACrossSectionDataSet* table = pos->second;
67 delete table;
68 }
69
70 // Final state
71
72 eVecm.clear();
73 pVecm.clear();
74
75}
76
77//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
78
79void G4DNABornIonisationModel::Initialise(const G4ParticleDefinition* particle,
80 const G4DataVector& /*cuts*/)
81{
82
83 if (verboseLevel > 3)
84 G4cout << "Calling G4DNABornIonisationModel::Initialise()" << G4endl;
85
86 // Energy limits
87
88 G4String fileElectron("dna/sigma_ionisation_e_born");
89 G4String fileProton("dna/sigma_ionisation_p_born");
90
91 G4ParticleDefinition* electronDef = G4Electron::ElectronDefinition();
92 G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
93
94 G4String electron;
95 G4String proton;
96
97 G4double scaleFactor = (1.e-22 / 3.343) * m*m;
98
99 char *path = getenv("G4LEDATA");
100
101 if (electronDef != 0)
102 {
103 electron = electronDef->GetParticleName();
104
105 tableFile[electron] = fileElectron;
106
107 lowEnergyLimit[electron] = 11. * eV;
108 highEnergyLimit[electron] = 1. * MeV;
109
110 // Cross section
111
112 G4DNACrossSectionDataSet* tableE = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor );
113 tableE->LoadData(fileElectron);
114
115 tableData[electron] = tableE;
116
117 // Final state
118
119 std::ostringstream eFullFileName;
120 eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat";
121 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
122
123 if (!eDiffCrossSection)
124 {
125 G4Exception("G4DNABornIonisationModel::ERROR OPENING electron DATA FILE");
126 }
127
128 eTdummyVec.push_back(0.);
129 while(!eDiffCrossSection.eof())
130 {
131 double tDummy;
132 double eDummy;
133 eDiffCrossSection>>tDummy>>eDummy;
134 if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy);
135 for (int j=0; j<5; j++)
136 {
137 eDiffCrossSection>>eDiffCrossSectionData[j][tDummy][eDummy];
138
139 // SI - only if eof is not reached !
140 if (!eDiffCrossSection.eof()) eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
141
142 eVecm[tDummy].push_back(eDummy);
143
144 }
145 }
146
147 //
148 }
149 else
150 {
151 G4Exception("G4DNABornIonisationModel::Initialise(): electron is not defined");
152 }
153
154 if (protonDef != 0)
155 {
156 proton = protonDef->GetParticleName();
157
158 tableFile[proton] = fileProton;
159
160 lowEnergyLimit[proton] = 500. * keV;
161 highEnergyLimit[proton] = 100. * MeV;
162
163 // Cross section
164
165 G4DNACrossSectionDataSet* tableP = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor );
166 tableP->LoadData(fileProton);
167
168 tableData[proton] = tableP;
169
170 // Final state
171
172 std::ostringstream pFullFileName;
173 pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat";
174 std::ifstream pDiffCrossSection(pFullFileName.str().c_str());
175
176 if (!pDiffCrossSection)
177 {
178 G4Exception("G4DNABornIonisationModel::ERROR OPENING proton DATA FILE");
179 }
180
181 pTdummyVec.push_back(0.);
182 while(!pDiffCrossSection.eof())
183 {
184 double tDummy;
185 double eDummy;
186 pDiffCrossSection>>tDummy>>eDummy;
187 if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy);
188 for (int j=0; j<5; j++)
189 {
190 pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy];
191
192 // SI - only if eof is not reached !
193 if (!pDiffCrossSection.eof()) pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
194
195 pVecm[tDummy].push_back(eDummy);
196 }
197 }
198
199 }
200 else
201 {
202 G4Exception("G4DNABornIonisationModel::Initialise(): proton is not defined");
203 }
204
205 if (particle==electronDef)
206 {
207 SetLowEnergyLimit(lowEnergyLimit[electron]);
208 SetHighEnergyLimit(highEnergyLimit[electron]);
209 }
210
211 if (particle==protonDef)
212 {
213 SetLowEnergyLimit(lowEnergyLimit[proton]);
214 SetHighEnergyLimit(highEnergyLimit[proton]);
215 }
216
217 if( verboseLevel>0 )
218 {
219 G4cout << "Born ionisation model is initialized " << G4endl
220 << "Energy range: "
221 << LowEnergyLimit() / eV << " eV - "
222 << HighEnergyLimit() / keV << " keV for "
223 << particle->GetParticleName()
224 << G4endl;
225 }
226
227 //
228
229 if(!isInitialised)
230 {
231 isInitialised = true;
232
233 if(pParticleChange)
234 fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
235 else
236 fParticleChangeForGamma = new G4ParticleChangeForGamma();
237 }
238
239 // InitialiseElementSelectors(particle,cuts);
240
241 // Test if water material
242
243 flagMaterialIsWater= false;
244 densityWater = 0;
245
246 const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
247
248 if(theCoupleTable)
249 {
250 G4int numOfCouples = theCoupleTable->GetTableSize();
251
252 if(numOfCouples>0)
253 {
254 for (G4int i=0; i<numOfCouples; i++)
255 {
256 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
257 const G4Material* material = couple->GetMaterial();
258
259 if (material->GetName() == "G4_WATER")
260 {
261 G4double density = material->GetAtomicNumDensityVector()[1];
262 flagMaterialIsWater = true;
263 densityWater = density;
264
265 if (verboseLevel > 3)
266 G4cout << "****** Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
267 }
268
269 }
270
271 } // if(numOfCouples>0)
272
273 } // if (theCoupleTable)
274
275}
276
277//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
278
279G4double G4DNABornIonisationModel::CrossSectionPerVolume(const G4Material*,
280 const G4ParticleDefinition* particleDefinition,
281 G4double ekin,
282 G4double,
283 G4double)
284{
285 if (verboseLevel > 3)
286 G4cout << "Calling CrossSectionPerVolume() of G4DNABornIonisationModel" << G4endl;
287
288 if (
289 particleDefinition != G4Proton::ProtonDefinition()
290 &&
291 particleDefinition != G4Electron::ElectronDefinition()
292 )
293
294 return 0;
295
296 // Calculate total cross section for model
297
298 G4double lowLim = 0;
299 G4double highLim = 0;
300 G4double sigma=0;
301
302 if (flagMaterialIsWater)
303 {
304 const G4String& particleName = particleDefinition->GetParticleName();
305
306 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
307 pos1 = lowEnergyLimit.find(particleName);
308 if (pos1 != lowEnergyLimit.end())
309 {
310 lowLim = pos1->second;
311 }
312
313 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
314 pos2 = highEnergyLimit.find(particleName);
315 if (pos2 != highEnergyLimit.end())
316 {
317 highLim = pos2->second;
318 }
319
320 if (ekin >= lowLim && ekin < highLim)
321 {
322 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
323 pos = tableData.find(particleName);
324
325 if (pos != tableData.end())
326 {
327 G4DNACrossSectionDataSet* table = pos->second;
328 if (table != 0)
329 {
330 sigma = table->FindValue(ekin);
331 }
332 }
333 else
334 {
335 G4Exception("G4DNABornIonisationModel::CrossSectionPerVolume: attempting to calculate cross section for wrong particle");
336 }
337 }
338
339 if (verboseLevel > 3)
340 {
341 G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl;
342 G4cout << " - Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
343 G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*densityWater/(1./cm) << G4endl;
344 }
345
346 } // if (waterMaterial)
347
348 return sigma*densityWater;
349
350}
351
352//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
353
354void G4DNABornIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
355 const G4MaterialCutsCouple* /*couple*/,
356 const G4DynamicParticle* particle,
357 G4double,
358 G4double)
359{
360
361 if (verboseLevel > 3)
362 G4cout << "Calling SampleSecondaries() of G4DNABornIonisationModel" << G4endl;
363
364 G4double lowLim = 0;
365 G4double highLim = 0;
366
367 G4double k = particle->GetKineticEnergy();
368
369 const G4String& particleName = particle->GetDefinition()->GetParticleName();
370
371 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
372 pos1 = lowEnergyLimit.find(particleName);
373
374 if (pos1 != lowEnergyLimit.end())
375 {
376 lowLim = pos1->second;
377 }
378
379 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
380 pos2 = highEnergyLimit.find(particleName);
381
382 if (pos2 != highEnergyLimit.end())
383 {
384 highLim = pos2->second;
385 }
386
387 if (k >= lowLim && k < highLim)
388 {
389 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
390 G4double particleMass = particle->GetDefinition()->GetPDGMass();
391 G4double totalEnergy = k + particleMass;
392 G4double pSquare = k * (totalEnergy + particleMass);
393 G4double totalMomentum = std::sqrt(pSquare);
394
395 G4int ionizationShell = RandomSelect(k,particleName);
396
397 G4double secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
398
399 G4double bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
400
401 G4double cosTheta = 0.;
402 G4double phi = 0.;
403 RandomizeEjectedElectronDirection(particle->GetDefinition(), k,secondaryKinetic, cosTheta, phi);
404
405 G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
406 G4double dirX = sinTheta*std::cos(phi);
407 G4double dirY = sinTheta*std::sin(phi);
408 G4double dirZ = cosTheta;
409 G4ThreeVector deltaDirection(dirX,dirY,dirZ);
410 deltaDirection.rotateUz(primaryDirection);
411
412 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
413
414 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
415 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
416 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
417 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
418 finalPx /= finalMomentum;
419 finalPy /= finalMomentum;
420 finalPz /= finalMomentum;
421
422 G4ThreeVector direction;
423 direction.set(finalPx,finalPy,finalPz);
424
425 fParticleChangeForGamma->ProposeMomentumDirection(direction.unit()) ;
426 fParticleChangeForGamma->SetProposedKineticEnergy(k-bindingEnergy-secondaryKinetic);
427 fParticleChangeForGamma->ProposeLocalEnergyDeposit(bindingEnergy);
428
429 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic) ;
430 fvect->push_back(dp);
431 /*
432 // creating neutral water molechule...
433
434 G4DNAGenericMoleculeManager *instance;
435 instance = G4DNAGenericMoleculeManager::Instance();
436 G4ParticleDefinition* waterDef = NULL;
437 G4Molecule* water = instance->GetMolecule("H2O");
438 waterDef = (G4ParticleDefinition*)water;
439
440 direction.set(0.,0.,0.);
441
442 //G4DynamicParticle* dynamicWater = new G4DynamicParticle(waterDef, direction, bindingEnergy);
443 G4DynamicMolecule* dynamicWater = new G4DynamicMolecule(water, direction, bindingEnergy);
444
445
446 //dynamicWater->RemoveElectron(ionizationShell, 1);
447
448 G4DynamicMolecule* dynamicWater2 = new G4DynamicMolecule(water, direction, bindingEnergy);
449 G4DynamicMolecule* dynamicWater3 = new G4DynamicMolecule(water, direction, bindingEnergy);
450
451 fvect->push_back(dynamicWater);
452 fvect->push_back(dynamicWater2);
453 fvect->push_back(dynamicWater3);
454 */
455 }
456
457}
458
459//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
460
461G4double G4DNABornIonisationModel::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
462G4double k, G4int shell)
463{
464 if (particleDefinition == G4Electron::ElectronDefinition())
465 {
466 G4double maximumEnergyTransfer=0.;
467 if ((k+waterStructure.IonisationEnergy(shell))/2. > k) maximumEnergyTransfer=k;
468 else maximumEnergyTransfer = (k+waterStructure.IonisationEnergy(shell))/2.;
469
470// SI : original method
471/*
472 G4double crossSectionMaximum = 0.;
473 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
474 {
475 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
476 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
477 }
478*/
479
480
481// SI : alternative method
482
483 G4double crossSectionMaximum = 0.;
484
485 G4double minEnergy = waterStructure.IonisationEnergy(shell);
486 G4double maxEnergy = maximumEnergyTransfer;
487 G4int nEnergySteps = 50;
488
489 G4double value(minEnergy);
490 G4double stpEnergy(std::pow(maxEnergy/value, 1./static_cast<G4double>(nEnergySteps-1)));
491 G4int step(nEnergySteps);
492 while (step>0)
493 {
494 step--;
495 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
496 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
497 value*=stpEnergy;
498 }
499//
500
501 G4double secondaryElectronKineticEnergy=0.;
502 do
503 {
504 secondaryElectronKineticEnergy = G4UniformRand() * (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
505 } while(G4UniformRand()*crossSectionMaximum >
506 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
507
508 return secondaryElectronKineticEnergy;
509
510 }
511
512 if (particleDefinition == G4Proton::ProtonDefinition())
513 {
514 G4double maximumKineticEnergyTransfer = 4.* (electron_mass_c2 / proton_mass_c2) * k - (waterStructure.IonisationEnergy(shell));
515
516 G4double crossSectionMaximum = 0.;
517 for (G4double value = waterStructure.IonisationEnergy(shell);
518 value<=4.*waterStructure.IonisationEnergy(shell) ;
519 value+=0.1*eV)
520 {
521 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
522 if (differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
523 }
524
525 G4double secondaryElectronKineticEnergy = 0.;
526 do
527 {
528 secondaryElectronKineticEnergy = G4UniformRand() * maximumKineticEnergyTransfer;
529 } while(G4UniformRand()*crossSectionMaximum >=
530 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
531
532 return secondaryElectronKineticEnergy;
533 }
534
535 return 0;
536}
537
538//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
539
540void G4DNABornIonisationModel::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
541 G4double k,
542 G4double secKinetic,
543 G4double & cosTheta,
544 G4double & phi )
545{
546 if (particleDefinition == G4Electron::ElectronDefinition())
547 {
548 phi = twopi * G4UniformRand();
549 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
550 else if (secKinetic <= 200.*eV)
551 {
552 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
553 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
554 }
555 else
556 {
557 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
558 cosTheta = std::sqrt(1.-sin2O);
559 }
560 }
561
562 if (particleDefinition == G4Proton::ProtonDefinition())
563 {
564 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
565 phi = twopi * G4UniformRand();
566 cosTheta = std::sqrt(secKinetic / maxSecKinetic);
567 }
568}
569
570//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
571
572double G4DNABornIonisationModel::DifferentialCrossSection(G4ParticleDefinition * particleDefinition,
573 G4double k,
574 G4double energyTransfer,
575 G4int ionizationLevelIndex)
576{
577 G4double sigma = 0.;
578
579 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex))
580 {
581 G4double valueT1 = 0;
582 G4double valueT2 = 0;
583 G4double valueE21 = 0;
584 G4double valueE22 = 0;
585 G4double valueE12 = 0;
586 G4double valueE11 = 0;
587
588 G4double xs11 = 0;
589 G4double xs12 = 0;
590 G4double xs21 = 0;
591 G4double xs22 = 0;
592
593 if (particleDefinition == G4Electron::ElectronDefinition())
594 {
595 // k should be in eV and energy transfer eV also
596
597 std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
598
599 std::vector<double>::iterator t1 = t2-1;
600
601 // SI : the following condition avoids situations where energyTransfer >last vector element
602 if (energyTransfer <= eVecm[(*t1)].back() && energyTransfer <= eVecm[(*t2)].back() )
603 {
604 std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), energyTransfer);
605 std::vector<double>::iterator e11 = e12-1;
606
607 std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), energyTransfer);
608 std::vector<double>::iterator e21 = e22-1;
609
610 valueT1 =*t1;
611 valueT2 =*t2;
612 valueE21 =*e21;
613 valueE22 =*e22;
614 valueE12 =*e12;
615 valueE11 =*e11;
616
617 xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
618 xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
619 xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
620 xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
621 }
622
623 }
624
625 if (particleDefinition == G4Proton::ProtonDefinition())
626 {
627 // k should be in eV and energy transfer eV also
628 std::vector<double>::iterator t2 = std::upper_bound(pTdummyVec.begin(),pTdummyVec.end(), k);
629 std::vector<double>::iterator t1 = t2-1;
630
631 std::vector<double>::iterator e12 = std::upper_bound(pVecm[(*t1)].begin(),pVecm[(*t1)].end(), energyTransfer);
632 std::vector<double>::iterator e11 = e12-1;
633
634 std::vector<double>::iterator e22 = std::upper_bound(pVecm[(*t2)].begin(),pVecm[(*t2)].end(), energyTransfer);
635 std::vector<double>::iterator e21 = e22-1;
636
637 valueT1 =*t1;
638 valueT2 =*t2;
639 valueE21 =*e21;
640 valueE22 =*e22;
641 valueE12 =*e12;
642 valueE11 =*e11;
643
644 xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
645 xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
646 xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
647 xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
648
649 }
650
651 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
652 if (xsProduct != 0.)
653 {
654 sigma = QuadInterpolator( valueE11, valueE12,
655 valueE21, valueE22,
656 xs11, xs12,
657 xs21, xs22,
658 valueT1, valueT2,
659 k, energyTransfer);
660 }
661
662 }
663
664 return sigma;
665}
666
667//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
668
669G4double G4DNABornIonisationModel::LogLogInterpolate(G4double e1,
670 G4double e2,
671 G4double e,
672 G4double xs1,
673 G4double xs2)
674{
675 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
676 G4double b = std::log10(xs2) - a*std::log10(e2);
677 G4double sigma = a*std::log10(e) + b;
678 G4double value = (std::pow(10.,sigma));
679 return value;
680}
681
682//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
683
684G4double G4DNABornIonisationModel::QuadInterpolator(G4double e11, G4double e12,
685 G4double e21, G4double e22,
686 G4double xs11, G4double xs12,
687 G4double xs21, G4double xs22,
688 G4double t1, G4double t2,
689 G4double t, G4double e)
690{
691 G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
692 G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
693 G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
694 return value;
695}
696
697//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
698
699G4int G4DNABornIonisationModel::RandomSelect(G4double k, const G4String& particle )
700{
701 G4int level = 0;
702
703 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
704 pos = tableData.find(particle);
705
706 if (pos != tableData.end())
707 {
708 G4DNACrossSectionDataSet* table = pos->second;
709
710 if (table != 0)
711 {
712 G4double* valuesBuffer = new G4double[table->NumberOfComponents()];
713 const size_t n(table->NumberOfComponents());
714 size_t i(n);
715 G4double value = 0.;
716
717 while (i>0)
718 {
719 i--;
720 valuesBuffer[i] = table->GetComponent(i)->FindValue(k);
721 value += valuesBuffer[i];
722 }
723
724 value *= G4UniformRand();
725
726 i = n;
727
728 while (i > 0)
729 {
730 i--;
731
732 if (valuesBuffer[i] > value)
733 {
734 delete[] valuesBuffer;
735 return i;
736 }
737 value -= valuesBuffer[i];
738 }
739
740 if (valuesBuffer) delete[] valuesBuffer;
741
742 }
743 }
744 else
745 {
746 G4Exception("G4DNABornIonisationModel::RandomSelect attempting to calculate cross section for wrong particle");
747 }
748
749 return level;
750}
751
Note: See TracBrowser for help on using the repository browser.