// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4DNADingfelderChargeIncreaseModel.cc,v 1.6 2009/08/13 11:32:47 sincerti Exp $ // GEANT4 tag $Name: geant4-09-03 $ // #include "G4DNADingfelderChargeIncreaseModel.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4DNADingfelderChargeIncreaseModel::G4DNADingfelderChargeIncreaseModel(const G4ParticleDefinition*, const G4String& nam) :G4VEmModel(nam),isInitialised(false) { verboseLevel= 0; // Verbosity scale: // 0 = nothing // 1 = warning for energy non-conservation // 2 = details of energy budget // 3 = calculation of cross sections, file openings, sampling of atoms // 4 = entering in methods if( verboseLevel>0 ) { G4cout << "Dingfelder charge increase model is constructed " << G4endl; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4DNADingfelderChargeIncreaseModel::~G4DNADingfelderChargeIncreaseModel() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4DNADingfelderChargeIncreaseModel::Initialise(const G4ParticleDefinition* particle, const G4DataVector& /*cuts*/) { if (verboseLevel > 3) G4cout << "Calling G4DNADingfelderChargeIncreaseModel::Initialise()" << G4endl; // Energy limits G4DNAGenericIonsManager *instance; instance = G4DNAGenericIonsManager::Instance(); G4ParticleDefinition* hydrogenDef = instance->GetIon("hydrogen"); G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+"); G4ParticleDefinition* heliumDef = instance->GetIon("helium"); G4String hydrogen; G4String alphaPlus; G4String helium; if (hydrogenDef != 0) { hydrogen = hydrogenDef->GetParticleName(); lowEnergyLimit[hydrogen] = 1. * keV; highEnergyLimit[hydrogen] = 10. * MeV; } else { G4Exception("G4DNADingfelderChargeIncreaseModel::Initialise: hydrogen is not defined"); } if (alphaPlusDef != 0) { alphaPlus = alphaPlusDef->GetParticleName(); lowEnergyLimit[alphaPlus] = 1. * keV; highEnergyLimit[alphaPlus] = 10. * MeV; } else { G4Exception("G4DNADingfelderChargeIncreaseModel::Initialise: alphaPlus is not defined"); } if (heliumDef != 0) { helium = heliumDef->GetParticleName(); lowEnergyLimit[helium] = 1. * keV; highEnergyLimit[helium] = 10. * MeV; } else { G4Exception("G4DNADingfelderChargeIncreaseModel::Initialise: helium is not defined"); } if (particle==hydrogenDef) { SetLowEnergyLimit(lowEnergyLimit[hydrogen]); SetHighEnergyLimit(highEnergyLimit[hydrogen]); } if (particle==alphaPlusDef) { SetLowEnergyLimit(lowEnergyLimit[alphaPlus]); SetHighEnergyLimit(highEnergyLimit[alphaPlus]); } if (particle==heliumDef) { SetLowEnergyLimit(lowEnergyLimit[helium]); SetHighEnergyLimit(highEnergyLimit[helium]); } // Final state //ALPHA+ f0[0][0]=1.; a0[0][0]=2.25; a1[0][0]=-0.75; b0[0][0]=-32.10; c0[0][0]=0.600; d0[0][0]=2.40; x0[0][0]=4.60; x1[0][0]=-1.; b1[0][0]=-1.; numberOfPartialCrossSections[0]=1; //HELIUM f0[0][1]=1.; a0[0][1]=2.25; a1[0][1]=-0.75; b0[0][1]=-30.93; c0[0][1]=0.590; d0[0][1]=2.35; x0[0][1]=4.29; f0[1][1]=1.; a0[1][1]=2.25; a1[1][1]=-0.75; b0[1][1]=-32.61; c0[1][1]=0.435; d0[1][1]=2.70; x0[1][1]=4.45; x1[0][1]=-1.; b1[0][1]=-1.; x1[1][1]=-1.; b1[1][1]=-1.; numberOfPartialCrossSections[1]=2; // if( verboseLevel>0 ) { G4cout << "Dingfelder charge increase model is initialized " << G4endl << "Energy range: " << LowEnergyLimit() / keV << " keV - " << HighEnergyLimit() / MeV << " MeV for " << particle->GetParticleName() << G4endl; } if(!isInitialised) { isInitialised = true; if(pParticleChange) fParticleChangeForGamma = reinterpret_cast(pParticleChange); else fParticleChangeForGamma = new G4ParticleChangeForGamma(); } // InitialiseElementSelectors(particle,cuts); // Test if water material flagMaterialIsWater= false; densityWater = 0; const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable(); if(theCoupleTable) { G4int numOfCouples = theCoupleTable->GetTableSize(); if(numOfCouples>0) { for (G4int i=0; iGetMaterialCutsCouple(i); const G4Material* material = couple->GetMaterial(); if (material->GetName() == "G4_WATER") { G4double density = material->GetAtomicNumDensityVector()[1]; flagMaterialIsWater = true; densityWater = density; if (verboseLevel > 3) G4cout << "****** Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl; } } } // if(numOfCouples>0) } // if (theCoupleTable) } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4DNADingfelderChargeIncreaseModel::CrossSectionPerVolume(const G4Material*, const G4ParticleDefinition* particleDefinition, G4double k, G4double, G4double) { if (verboseLevel > 3) G4cout << "Calling CrossSectionPerVolume() of G4DNADingfelderChargeIncreaseModel" << G4endl; // Calculate total cross section for model G4DNAGenericIonsManager *instance; instance = G4DNAGenericIonsManager::Instance(); if ( particleDefinition != instance->GetIon("hydrogen") && particleDefinition != instance->GetIon("alpha+") && particleDefinition != instance->GetIon("helium") ) return 0; G4double lowLim = 0; G4double highLim = 0; G4double totalCrossSection = 0.; if (flagMaterialIsWater) { const G4String& particleName = particleDefinition->GetParticleName(); std::map< G4String,G4double,std::less >::iterator pos1; pos1 = lowEnergyLimit.find(particleName); if (pos1 != lowEnergyLimit.end()) { lowLim = pos1->second; } std::map< G4String,G4double,std::less >::iterator pos2; pos2 = highEnergyLimit.find(particleName); if (pos2 != highEnergyLimit.end()) { highLim = pos2->second; } if (k >= lowLim && k < highLim) { //HYDROGEN if (particleDefinition == instance->GetIon("hydrogen")) { const G4double aa = 2.835; const G4double bb = 0.310; const G4double cc = 2.100; const G4double dd = 0.760; const G4double fac = 1.0e-18; const G4double rr = 13.606 * eV; G4double t = k / (proton_mass_c2/electron_mass_c2); G4double x = t / rr; G4double temp = 4.0 * pi * Bohr_radius/nm * Bohr_radius/nm * fac; G4double sigmal = temp * cc * (std::pow(x,dd)); G4double sigmah = temp * (aa * std::log(1.0 + x) + bb) / x; totalCrossSection = 1.0/(1.0/sigmal + 1.0/sigmah) *m*m; } else { totalCrossSection = Sum(k,particleDefinition); } } if (verboseLevel > 3) { G4cout << "---> Kinetic energy(eV)=" << k/eV << G4endl; G4cout << " - Cross section per water molecule (cm^2)=" << totalCrossSection/cm/cm << G4endl; G4cout << " - Cross section per water molecule (cm^-1)=" << totalCrossSection*densityWater/(1./cm) << G4endl; } } // if (flagMaterialIsWater) return totalCrossSection*densityWater; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4DNADingfelderChargeIncreaseModel::SampleSecondaries(std::vector* fvect, const G4MaterialCutsCouple* /*couple*/, const G4DynamicParticle* aDynamicParticle, G4double, G4double) { if (verboseLevel > 3) G4cout << "Calling SampleSecondaries() of G4DNADingfelderChargeIncreaseModel" << G4endl; fParticleChangeForGamma->ProposeTrackStatus(fStopAndKill); fParticleChangeForGamma->ProposeLocalEnergyDeposit(0.); G4ParticleDefinition* definition = aDynamicParticle->GetDefinition(); G4double inK = aDynamicParticle->GetKineticEnergy(); G4int finalStateIndex = RandomSelect(inK,definition); G4int n = NumberOfFinalStates(definition,finalStateIndex); G4double outK = inK - IncomingParticleBindingEnergyConstant(definition,finalStateIndex); G4DNAGenericIonsManager* instance; instance = G4DNAGenericIonsManager::Instance(); G4double electronK; if (definition == instance->GetIon("hydrogen")) electronK = inK*electron_mass_c2/proton_mass_c2; else electronK = inK*electron_mass_c2/(3728*MeV); if (outK<0) { G4String message; message="G4DNADingfelderChargeIncreaseModel::SampleSecondaries: final kinetic energy is below 0! Process "; } G4DynamicParticle* dp = new G4DynamicParticle (OutgoingParticleDefinition(definition,finalStateIndex), aDynamicParticle->GetMomentumDirection(), outK) ; fvect->push_back(dp); n = n - 1; while (n>0) { n--; fvect->push_back(new G4DynamicParticle (G4Electron::Electron(), aDynamicParticle->GetMomentumDirection(), electronK) ); } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4int G4DNADingfelderChargeIncreaseModel::NumberOfFinalStates(G4ParticleDefinition* particleDefinition, G4int finalStateIndex ) { G4DNAGenericIonsManager* instance; instance = G4DNAGenericIonsManager::Instance(); if (particleDefinition == instance->GetIon("hydrogen")) return 2; if (particleDefinition == instance->GetIon("alpha+")) return 2; if (particleDefinition == instance->GetIon("helium")) { if (finalStateIndex==0) return 2; return 3; } return 0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4ParticleDefinition* G4DNADingfelderChargeIncreaseModel::OutgoingParticleDefinition (G4ParticleDefinition* particleDefinition, G4int finalStateIndex) { G4DNAGenericIonsManager * instance(G4DNAGenericIonsManager::Instance()); if (particleDefinition == instance->GetIon("hydrogen")) return G4Proton::Proton(); if (particleDefinition == instance->GetIon("alpha+")) return instance->GetIon("alpha++"); if (particleDefinition == instance->GetIon("helium")) { if (finalStateIndex==0) return instance->GetIon("alpha+"); return instance->GetIon("alpha++"); } return 0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4DNADingfelderChargeIncreaseModel::IncomingParticleBindingEnergyConstant(G4ParticleDefinition* particleDefinition, G4int finalStateIndex ) { G4DNAGenericIonsManager * instance(G4DNAGenericIonsManager::Instance()); if(particleDefinition == instance->GetIon("hydrogen")) return 13.6*eV; if(particleDefinition == instance->GetIon("alpha+")) { // Binding energy for He+ -> He++ + e- 54.509 eV // Binding energy for He -> He+ + e- 24.587 eV return 54.509*eV; } if(particleDefinition == instance->GetIon("helium")) { // Binding energy for He+ -> He++ + e- 54.509 eV // Binding energy for He -> He+ + e- 24.587 eV if (finalStateIndex==0) return 24.587*eV; return (54.509 + 24.587)*eV; } return 0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4DNADingfelderChargeIncreaseModel::PartialCrossSection(G4double k, G4int index, const G4ParticleDefinition* particleDefinition) { G4int particleTypeIndex = 0; G4DNAGenericIonsManager *instance; instance = G4DNAGenericIonsManager::Instance(); if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=0; if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=1; // // sigma(T) = f0 10 ^ y(log10(T/eV)) // // / a0 x + b0 x < x0 // | // y(x) = < a0 x + b0 - c0 (x - x0)^d0 x0 <= x < x1 // | // \ a1 x + b1 x >= x1 // // // f0, a0, a1, b0, b1, c0, d0, x0, x1 are parameters that change for protons and helium (0, +, ++) // // f0 has been added to the code in order to manage partial (shell-dependent) cross sections (if no shell dependence is present. f0=1. Sum of f0 over the considered shells should give 1) // // From Rad. Phys. and Chem. 59 (2000) 255-275, M. Dingfelder et al. // Inelastic-collision cross sections of liquid water for interactions of energetic proton // if (x1[index][particleTypeIndex]GetIon("hydrogen")) return 0; if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=0; if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=1; const G4int n = numberOfPartialCrossSections[particleTypeIndex]; G4double* values(new G4double[n]); G4double value = 0; G4int i = n; while (i>0) { i--; values[i]=PartialCrossSection(k, i, particleDefinition); value+=values[i]; } value*=G4UniformRand(); i=n; while (i>0) { i--; if (values[i]>value) break; value-=values[i]; } delete[] values; return i; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4DNADingfelderChargeIncreaseModel::Sum(G4double k, const G4ParticleDefinition* particleDefinition) { G4int particleTypeIndex = 0; G4DNAGenericIonsManager *instance; instance = G4DNAGenericIonsManager::Instance(); if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=0; if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=1; G4double totalCrossSection = 0.; for (G4int i=0; i