source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNAEmfietzoglouExcitationModel.cc @ 991

Last change on this file since 991 was 968, checked in by garnier, 15 years ago

fichier ajoutes

File size: 10.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4DNAEmfietzoglouExcitationModel.cc,v 1.5 2009/02/16 12:46:58 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28//
29
30#include "G4DNAEmfietzoglouExcitationModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4DNAEmfietzoglouExcitationModel::G4DNAEmfietzoglouExcitationModel(const G4ParticleDefinition*,
39                                             const G4String& nam)
40:G4VEmModel(nam),isInitialised(false)
41{
42
43  lowEnergyLimit = 8.23 * eV; 
44  highEnergyLimit = 10 * MeV;
45  SetLowEnergyLimit(lowEnergyLimit);
46  SetHighEnergyLimit(highEnergyLimit);
47
48  verboseLevel= 0;
49  // Verbosity scale:
50  // 0 = nothing
51  // 1 = warning for energy non-conservation
52  // 2 = details of energy budget
53  // 3 = calculation of cross sections, file openings, sampling of atoms
54  // 4 = entering in methods
55 
56  if (verboseLevel > 3)
57
58  G4cout << "Emfietzoglou Excitation model is constructed " << G4endl
59         << "Energy range: "
60         << lowEnergyLimit / eV << " eV - "
61         << highEnergyLimit / MeV << " MeV"
62         << G4endl;
63 
64}
65
66//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
67
68G4DNAEmfietzoglouExcitationModel::~G4DNAEmfietzoglouExcitationModel()
69{}
70
71//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
72
73void G4DNAEmfietzoglouExcitationModel::Initialise(const G4ParticleDefinition* /*particle*/,
74                                       const G4DataVector& /*cuts*/)
75{
76
77  if (verboseLevel > 3)
78    G4cout << "Calling G4DNAEmfietzoglouExcitationModel::Initialise()" << G4endl;
79
80  // Energy limits
81 
82  if (LowEnergyLimit() < lowEnergyLimit)
83  {
84    G4cout << "G4DNAEmfietzoglouExcitationModel: low energy limit increased from " << 
85        LowEnergyLimit()/eV << " eV to " << lowEnergyLimit/eV << " eV" << G4endl;
86    SetLowEnergyLimit(lowEnergyLimit);
87    }
88
89  if (HighEnergyLimit() > highEnergyLimit)
90  {
91    G4cout << "G4DNAEmfietzoglouExcitationModel: high energy limit decreased from " << 
92        HighEnergyLimit()/MeV << " MeV to " << highEnergyLimit/MeV << " MeV" << G4endl;
93    SetHighEnergyLimit(highEnergyLimit);
94  }
95
96  //
97 
98  nLevels = waterExcitation.NumberOfLevels();
99
100  //
101 
102  G4cout << "Emfietzoglou Excitation model is initialized " << G4endl
103         << "Energy range: "
104         << LowEnergyLimit() / eV << " eV - "
105         << HighEnergyLimit() / MeV << " MeV"
106         << G4endl;
107
108  if(!isInitialised) 
109  {
110    isInitialised = true;
111 
112    if(pParticleChange)
113      fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
114    else
115      fParticleChangeForGamma = new G4ParticleChangeForGamma();
116  }   
117
118  // InitialiseElementSelectors(particle,cuts);
119
120  // Test if water material
121
122  flagMaterialIsWater= false;
123  densityWater = 0;
124
125  const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
126
127  if(theCoupleTable) 
128  {
129    G4int numOfCouples = theCoupleTable->GetTableSize();
130 
131    if(numOfCouples>0) 
132    {
133          for (G4int i=0; i<numOfCouples; i++) 
134          {
135            const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
136            const G4Material* material = couple->GetMaterial();
137
138            size_t j = material->GetNumberOfElements();
139            while (j>0)
140            {
141               j--;
142               const G4Element* element(material->GetElement(j));
143               if (element->GetZ() == 8.)
144               {
145                  G4double density = material->GetAtomicNumDensityVector()[j];
146                  if (density > 0.) 
147                  { 
148                    flagMaterialIsWater = true; 
149                    densityWater = density; 
150                   
151                    if (verboseLevel > 3) 
152                    G4cout << "Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
153                  }
154               }
155            }
156 
157          }
158   } // if(numOfCouples>0)
159
160  } // if (theCoupleTable)
161
162}
163
164//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
165
166G4double G4DNAEmfietzoglouExcitationModel::CrossSectionPerVolume(const G4Material*,
167                                           const G4ParticleDefinition* particleDefinition,
168                                           G4double ekin,
169                                           G4double,
170                                           G4double)
171{
172  if (verboseLevel > 3)
173    G4cout << "Calling CrossSectionPerVolume() of G4DNAEmfietzoglouExcitationModel" << G4endl;
174
175 // Calculate total cross section for model
176
177 G4double sigma=0;
178 
179 if (flagMaterialIsWater)
180 {
181
182  if (particleDefinition == G4Electron::ElectronDefinition())
183  {
184    if (ekin >= lowEnergyLimit && ekin < highEnergyLimit)
185    {
186      sigma = Sum(ekin);
187    }
188  }
189 
190  if (verboseLevel > 3)
191  {
192    G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl;
193    G4cout << " - Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
194    G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*densityWater/(1./cm) << G4endl;
195  } 
196
197 } // if (flagMaterialIsWater)
198         
199 return sigma*densityWater;               
200}
201
202//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
203
204void G4DNAEmfietzoglouExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
205                                              const G4MaterialCutsCouple* /*couple*/,
206                                              const G4DynamicParticle* aDynamicElectron,
207                                              G4double,
208                                              G4double)
209{
210
211  if (verboseLevel > 3)
212    G4cout << "Calling SampleSecondaries() of G4DNAEmfietzoglouExcitationModel" << G4endl;
213
214  G4double electronEnergy0 = aDynamicElectron->GetKineticEnergy();
215 
216  G4int level = RandomSelect(electronEnergy0);
217
218  G4double excitationEnergy = waterExcitation.ExcitationEnergy(level);
219  G4double newEnergy = electronEnergy0 - excitationEnergy;
220 
221  if (electronEnergy0 < highEnergyLimit)
222  {
223    if (newEnergy >= lowEnergyLimit)
224    {
225      fParticleChangeForGamma->ProposeMomentumDirection(aDynamicElectron->GetMomentumDirection());
226      fParticleChangeForGamma->SetProposedKineticEnergy(newEnergy);
227      fParticleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
228    }
229 
230    else   
231    {
232      fParticleChangeForGamma->ProposeTrackStatus(fStopAndKill);
233      fParticleChangeForGamma->ProposeLocalEnergyDeposit(electronEnergy0);
234    }
235  }
236}
237
238//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
239
240G4double G4DNAEmfietzoglouExcitationModel::PartialCrossSection(G4double t, G4int level)
241{
242  //                 Aj                        T
243  // Sigma(T) = ------------- (Bj /  T) ln(Cj ---) [1 - Bj / T]^Pj
244  //             2 pi alpha0                   R
245  //
246  // Sigma is the macroscopic cross section = N sigma, where N = number of target particles per unit volume
247  // and sigma is the microscopic cross section
248  // T      is the incoming electron kinetic energy
249  // alpha0 is the Bohr Radius (Bohr_radius)
250  // Aj, Bj, Cj & Pj are parameters that can be found in Emfietzoglou's papers
251  //
252  // From Phys. Med. Biol. 48 (2003) 2355-2371, D.Emfietzoglou,
253  // Monte Carlo Simulation of the energy loss of low energy electrons in liquid Water
254  //
255  // Scaling for macroscopic cross section: number of water moleculs per unit volume
256  // const G4double sigma0 = (10. / 3.343e22) * cm2;
257
258  const G4double density = 3.34192e+19 * mm3;
259
260  const G4double aj[]={0.0205, 0.0209, 0.0130, 0.0026, 0.0025};
261  const G4double cj[]={4.9801, 3.3850, 2.8095, 1.9242, 3.4624};
262  const G4double pj[]={0.4757, 0.3483, 0.4443, 0.3429, 0.4379};
263  const G4double r = 13.6 * eV;
264 
265  G4double sigma = 0.;
266 
267  G4double exc = waterExcitation.ExcitationEnergy(level);
268 
269  if (t >= exc)
270  {
271      G4double excitationSigma = ( aj[level] / (2.*pi*Bohr_radius)) 
272        * (exc / t) 
273        * std::log(cj[level]*(t/r)) 
274        * std::pow((1.- (exc/t)), pj[level]);
275      sigma = excitationSigma / density;
276  }
277  return sigma;
278}
279
280//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
281
282G4int G4DNAEmfietzoglouExcitationModel::RandomSelect(G4double k)
283{
284  G4int i = nLevels;
285  G4double value = 0.;
286  std::deque<double> values;
287 
288  while (i > 0)
289  {
290    i--;
291    G4double partial = PartialCrossSection(k,i);
292    values.push_front(partial);
293    value += partial;
294  }
295
296  value *= G4UniformRand();
297   
298  i = nLevels;
299
300  while (i > 0)
301  {
302    i--;
303    if (values[i] > value) return i;
304    value -= values[i];
305  }
306   
307  return 0;
308}
309
310//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311
312G4double G4DNAEmfietzoglouExcitationModel::Sum(G4double k)
313{
314  G4double totalCrossSection = 0.;
315
316  for (G4int i=0; i<nLevels; i++)
317  {
318    totalCrossSection += PartialCrossSection(k,i);
319  }
320  return totalCrossSection;
321}
322
Note: See TracBrowser for help on using the repository browser.