source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNAEmfietzoglouExcitationModel.cc @ 1192

Last change on this file since 1192 was 1192, checked in by garnier, 15 years ago

update par rapport a CVS

File size: 9.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4DNAEmfietzoglouExcitationModel.cc,v 1.8 2009/08/13 11:32:47 sincerti Exp $
27// GEANT4 tag $Name: emlowen-V09-02-64 $
28//
29
30#include "G4DNAEmfietzoglouExcitationModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4DNAEmfietzoglouExcitationModel::G4DNAEmfietzoglouExcitationModel(const G4ParticleDefinition*,
39                                             const G4String& nam)
40:G4VEmModel(nam),isInitialised(false)
41{
42
43  lowEnergyLimit = 8.23 * eV; 
44  highEnergyLimit = 10 * MeV;
45  SetLowEnergyLimit(lowEnergyLimit);
46  SetHighEnergyLimit(highEnergyLimit);
47
48  verboseLevel= 0;
49  // Verbosity scale:
50  // 0 = nothing
51  // 1 = warning for energy non-conservation
52  // 2 = details of energy budget
53  // 3 = calculation of cross sections, file openings, sampling of atoms
54  // 4 = entering in methods
55 
56  if (verboseLevel > 3)
57
58  if( verboseLevel>0 ) 
59  { 
60    G4cout << "Emfietzoglou Excitation model is constructed " << G4endl
61           << "Energy range: "
62           << lowEnergyLimit / eV << " eV - "
63           << highEnergyLimit / MeV << " MeV"
64           << G4endl;
65  } 
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
69
70G4DNAEmfietzoglouExcitationModel::~G4DNAEmfietzoglouExcitationModel()
71{}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
74
75void G4DNAEmfietzoglouExcitationModel::Initialise(const G4ParticleDefinition* /*particle*/,
76                                       const G4DataVector& /*cuts*/)
77{
78
79  if (verboseLevel > 3)
80    G4cout << "Calling G4DNAEmfietzoglouExcitationModel::Initialise()" << G4endl;
81
82  // Energy limits
83 
84  if (LowEnergyLimit() < lowEnergyLimit)
85  {
86    G4cout << "G4DNAEmfietzoglouExcitationModel: low energy limit increased from " << 
87        LowEnergyLimit()/eV << " eV to " << lowEnergyLimit/eV << " eV" << G4endl;
88    SetLowEnergyLimit(lowEnergyLimit);
89    }
90
91  if (HighEnergyLimit() > highEnergyLimit)
92  {
93    G4cout << "G4DNAEmfietzoglouExcitationModel: high energy limit decreased from " << 
94        HighEnergyLimit()/MeV << " MeV to " << highEnergyLimit/MeV << " MeV" << G4endl;
95    SetHighEnergyLimit(highEnergyLimit);
96  }
97
98  //
99 
100  nLevels = waterExcitation.NumberOfLevels();
101
102  //
103  if( verboseLevel>0 ) 
104  { 
105    G4cout << "Emfietzoglou Excitation model is initialized " << G4endl
106           << "Energy range: "
107           << LowEnergyLimit() / eV << " eV - "
108           << HighEnergyLimit() / MeV << " MeV"
109           << G4endl;
110  }
111
112  if(!isInitialised) 
113  {
114    isInitialised = true;
115 
116    if(pParticleChange)
117      fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
118    else
119      fParticleChangeForGamma = new G4ParticleChangeForGamma();
120  }   
121
122  // InitialiseElementSelectors(particle,cuts);
123
124  // Test if water material
125
126  flagMaterialIsWater= false;
127  densityWater = 0;
128
129  const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
130
131  if(theCoupleTable) 
132  {
133    G4int numOfCouples = theCoupleTable->GetTableSize();
134 
135    if(numOfCouples>0) 
136    {
137          for (G4int i=0; i<numOfCouples; i++) 
138          {
139            const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
140            const G4Material* material = couple->GetMaterial();
141
142            if (material->GetName() == "G4_WATER") 
143            {
144              G4double density = material->GetAtomicNumDensityVector()[1];
145              flagMaterialIsWater = true; 
146              densityWater = density; 
147             
148              if (verboseLevel > 3) 
149              G4cout << "****** Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
150            }
151 
152          }
153
154    } // if(numOfCouples>0)
155
156  } // if (theCoupleTable)
157
158}
159
160//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
161
162G4double G4DNAEmfietzoglouExcitationModel::CrossSectionPerVolume(const G4Material*,
163                                           const G4ParticleDefinition* particleDefinition,
164                                           G4double ekin,
165                                           G4double,
166                                           G4double)
167{
168  if (verboseLevel > 3)
169    G4cout << "Calling CrossSectionPerVolume() of G4DNAEmfietzoglouExcitationModel" << G4endl;
170
171 // Calculate total cross section for model
172
173 G4double sigma=0;
174 
175 if (flagMaterialIsWater)
176 {
177
178  if (particleDefinition == G4Electron::ElectronDefinition())
179  {
180    if (ekin >= lowEnergyLimit && ekin < highEnergyLimit)
181    {
182      sigma = Sum(ekin);
183    }
184  }
185 
186  if (verboseLevel > 3)
187  {
188    G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl;
189    G4cout << " - Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
190    G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*densityWater/(1./cm) << G4endl;
191  } 
192
193 } // if (flagMaterialIsWater)
194         
195 return sigma*densityWater;               
196}
197
198//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
199
200void G4DNAEmfietzoglouExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
201                                              const G4MaterialCutsCouple* /*couple*/,
202                                              const G4DynamicParticle* aDynamicElectron,
203                                              G4double,
204                                              G4double)
205{
206
207  if (verboseLevel > 3)
208    G4cout << "Calling SampleSecondaries() of G4DNAEmfietzoglouExcitationModel" << G4endl;
209
210  G4double electronEnergy0 = aDynamicElectron->GetKineticEnergy();
211 
212  G4int level = RandomSelect(electronEnergy0);
213
214  G4double excitationEnergy = waterExcitation.ExcitationEnergy(level);
215  G4double newEnergy = electronEnergy0 - excitationEnergy;
216 
217  if (electronEnergy0 < highEnergyLimit)
218  {
219    if (newEnergy >= lowEnergyLimit)
220    {
221      fParticleChangeForGamma->ProposeMomentumDirection(aDynamicElectron->GetMomentumDirection());
222      fParticleChangeForGamma->SetProposedKineticEnergy(newEnergy);
223      fParticleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
224    }
225 
226    else   
227    {
228      fParticleChangeForGamma->ProposeTrackStatus(fStopAndKill);
229      fParticleChangeForGamma->ProposeLocalEnergyDeposit(electronEnergy0);
230    }
231  }
232}
233
234//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
235
236G4double G4DNAEmfietzoglouExcitationModel::PartialCrossSection(G4double t, G4int level)
237{
238  //                 Aj                        T
239  // Sigma(T) = ------------- (Bj /  T) ln(Cj ---) [1 - Bj / T]^Pj
240  //             2 pi alpha0                   R
241  //
242  // Sigma is the macroscopic cross section = N sigma, where N = number of target particles per unit volume
243  // and sigma is the microscopic cross section
244  // T      is the incoming electron kinetic energy
245  // alpha0 is the Bohr Radius (Bohr_radius)
246  // Aj, Bj, Cj & Pj are parameters that can be found in Emfietzoglou's papers
247  //
248  // From Phys. Med. Biol. 48 (2003) 2355-2371, D.Emfietzoglou,
249  // Monte Carlo Simulation of the energy loss of low energy electrons in liquid Water
250  //
251  // Scaling for macroscopic cross section: number of water moleculs per unit volume
252  // const G4double sigma0 = (10. / 3.343e22) * cm2;
253
254  const G4double density = 3.34192e+19 * mm3;
255
256  const G4double aj[]={0.0205, 0.0209, 0.0130, 0.0026, 0.0025};
257  const G4double cj[]={4.9801, 3.3850, 2.8095, 1.9242, 3.4624};
258  const G4double pj[]={0.4757, 0.3483, 0.4443, 0.3429, 0.4379};
259  const G4double r = 13.6 * eV;
260 
261  G4double sigma = 0.;
262 
263  G4double exc = waterExcitation.ExcitationEnergy(level);
264 
265  if (t >= exc)
266  {
267      G4double excitationSigma = ( aj[level] / (2.*pi*Bohr_radius)) 
268        * (exc / t) 
269        * std::log(cj[level]*(t/r)) 
270        * std::pow((1.- (exc/t)), pj[level]);
271      sigma = excitationSigma / density;
272  }
273  return sigma;
274}
275
276//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
277
278G4int G4DNAEmfietzoglouExcitationModel::RandomSelect(G4double k)
279{
280  G4int i = nLevels;
281  G4double value = 0.;
282  std::deque<double> values;
283 
284  while (i > 0)
285  {
286    i--;
287    G4double partial = PartialCrossSection(k,i);
288    values.push_front(partial);
289    value += partial;
290  }
291
292  value *= G4UniformRand();
293   
294  i = nLevels;
295
296  while (i > 0)
297  {
298    i--;
299    if (values[i] > value) return i;
300    value -= values[i];
301  }
302   
303  return 0;
304}
305
306//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
307
308G4double G4DNAEmfietzoglouExcitationModel::Sum(G4double k)
309{
310  G4double totalCrossSection = 0.;
311
312  for (G4int i=0; i<nLevels; i++)
313  {
314    totalCrossSection += PartialCrossSection(k,i);
315  }
316  return totalCrossSection;
317}
318
Note: See TracBrowser for help on using the repository browser.