source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNAMillerGreenExcitationModel.cc@ 1197

Last change on this file since 1197 was 1196, checked in by garnier, 16 years ago

update CVS release candidate geant4.9.3.01

File size: 18.2 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4DNAMillerGreenExcitationModel.cc,v 1.6 2009/08/13 11:32:47 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-03-cand-01 $
28//
29
30#include "G4DNAMillerGreenExcitationModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4DNAMillerGreenExcitationModel::G4DNAMillerGreenExcitationModel(const G4ParticleDefinition*,
39 const G4String& nam)
40:G4VEmModel(nam),isInitialised(false)
41{
42
43 verboseLevel= 0;
44 // Verbosity scale:
45 // 0 = nothing
46 // 1 = warning for energy non-conservation
47 // 2 = details of energy budget
48 // 3 = calculation of cross sections, file openings, sampling of atoms
49 // 4 = entering in methods
50
51 if( verboseLevel>0 )
52 {
53 G4cout << "Miller & Green excitation model is constructed " << G4endl;
54 }
55}
56
57//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
58
59G4DNAMillerGreenExcitationModel::~G4DNAMillerGreenExcitationModel()
60{}
61
62//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
63
64void G4DNAMillerGreenExcitationModel::Initialise(const G4ParticleDefinition* particle,
65 const G4DataVector& /*cuts*/)
66{
67
68 if (verboseLevel > 3)
69 G4cout << "Calling G4DNAMillerGreenExcitationModel::Initialise()" << G4endl;
70
71 // Energy limits
72
73 G4DNAGenericIonsManager *instance;
74 instance = G4DNAGenericIonsManager::Instance();
75 G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
76 G4ParticleDefinition* alphaPlusPlusDef = instance->GetIon("alpha++");
77 G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+");
78 G4ParticleDefinition* heliumDef = instance->GetIon("helium");
79
80 G4String proton;
81 G4String alphaPlusPlus;
82 G4String alphaPlus;
83 G4String helium;
84
85 if (protonDef != 0)
86 {
87 proton = protonDef->GetParticleName();
88 lowEnergyLimit[proton] = 10. * eV;
89 highEnergyLimit[proton] = 500. * keV;
90
91 kineticEnergyCorrection[0] = 1.;
92 slaterEffectiveCharge[0][0] = 0.;
93 slaterEffectiveCharge[1][0] = 0.;
94 slaterEffectiveCharge[2][0] = 0.;
95 sCoefficient[0][0] = 0.;
96 sCoefficient[1][0] = 0.;
97 sCoefficient[2][0] = 0.;
98 }
99 else
100 {
101 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: proton is not defined");
102 }
103
104 if (alphaPlusPlusDef != 0)
105 {
106 alphaPlusPlus = alphaPlusPlusDef->GetParticleName();
107 lowEnergyLimit[alphaPlusPlus] = 1. * keV;
108 highEnergyLimit[alphaPlusPlus] = 10. * MeV;
109
110 kineticEnergyCorrection[1] = 0.9382723/3.727417;
111 slaterEffectiveCharge[0][1]=0.;
112 slaterEffectiveCharge[1][1]=0.;
113 slaterEffectiveCharge[2][1]=0.;
114 sCoefficient[0][1]=0.;
115 sCoefficient[1][1]=0.;
116 sCoefficient[2][1]=0.;
117 }
118 else
119 {
120 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: alphaPlusPlus is not defined");
121 }
122
123 if (alphaPlusDef != 0)
124 {
125 alphaPlus = alphaPlusDef->GetParticleName();
126 lowEnergyLimit[alphaPlus] = 1. * keV;
127 highEnergyLimit[alphaPlus] = 10. * MeV;
128
129 kineticEnergyCorrection[2] = 0.9382723/3.727417;
130 slaterEffectiveCharge[0][2]=2.0;
131 slaterEffectiveCharge[1][2]=1.15;
132 slaterEffectiveCharge[2][2]=1.15;
133 sCoefficient[0][2]=0.7;
134 sCoefficient[1][2]=0.15;
135 sCoefficient[2][2]=0.15;
136 }
137 else
138 {
139 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: alphaPlus is not defined");
140 }
141
142 if (heliumDef != 0)
143 {
144 helium = heliumDef->GetParticleName();
145 lowEnergyLimit[helium] = 1. * keV;
146 highEnergyLimit[helium] = 10. * MeV;
147
148 kineticEnergyCorrection[3] = 0.9382723/3.727417;
149 slaterEffectiveCharge[0][3]=1.7;
150 slaterEffectiveCharge[1][3]=1.15;
151 slaterEffectiveCharge[2][3]=1.15;
152 sCoefficient[0][3]=0.5;
153 sCoefficient[1][3]=0.25;
154 sCoefficient[2][3]=0.25;
155 }
156 else
157 {
158 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: helium is not defined");
159 }
160
161 if (particle==protonDef)
162 {
163 SetLowEnergyLimit(lowEnergyLimit[proton]);
164 SetHighEnergyLimit(highEnergyLimit[proton]);
165 }
166
167 if (particle==alphaPlusPlusDef)
168 {
169 SetLowEnergyLimit(lowEnergyLimit[alphaPlusPlus]);
170 SetHighEnergyLimit(highEnergyLimit[alphaPlusPlus]);
171 }
172
173 if (particle==alphaPlusDef)
174 {
175 SetLowEnergyLimit(lowEnergyLimit[alphaPlus]);
176 SetHighEnergyLimit(highEnergyLimit[alphaPlus]);
177 }
178
179 if (particle==heliumDef)
180 {
181 SetLowEnergyLimit(lowEnergyLimit[helium]);
182 SetHighEnergyLimit(highEnergyLimit[helium]);
183 }
184
185 //
186
187 nLevels = waterExcitation.NumberOfLevels();
188
189 //
190 if( verboseLevel>0 )
191 {
192 G4cout << "Miller & Green excitation model is initialized " << G4endl
193 << "Energy range: "
194 << LowEnergyLimit() / eV << " eV - "
195 << HighEnergyLimit() / keV << " keV for "
196 << particle->GetParticleName()
197 << G4endl;
198 }
199
200 if(!isInitialised)
201 {
202 isInitialised = true;
203
204 if(pParticleChange)
205 fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
206 else
207 fParticleChangeForGamma = new G4ParticleChangeForGamma();
208 }
209
210 // InitialiseElementSelectors(particle,cuts);
211
212 // Test if water material
213
214 flagMaterialIsWater= false;
215 densityWater = 0;
216
217 const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
218
219 if(theCoupleTable)
220 {
221 G4int numOfCouples = theCoupleTable->GetTableSize();
222
223 if(numOfCouples>0)
224 {
225 for (G4int i=0; i<numOfCouples; i++)
226 {
227 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
228 const G4Material* material = couple->GetMaterial();
229
230 if (material->GetName() == "G4_WATER")
231 {
232 G4double density = material->GetAtomicNumDensityVector()[1];
233 flagMaterialIsWater = true;
234 densityWater = density;
235
236 if (verboseLevel > 3)
237 G4cout << "****** Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
238 }
239
240 }
241
242 } // if(numOfCouples>0)
243
244 } // if (theCoupleTable)
245
246}
247
248//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249
250G4double G4DNAMillerGreenExcitationModel::CrossSectionPerVolume(const G4Material* material,
251 const G4ParticleDefinition* particleDefinition,
252 G4double k,
253 G4double,
254 G4double)
255{
256 if (verboseLevel > 3)
257 G4cout << "Calling CrossSectionPerVolume() of G4DNAMillerGreenExcitationModel" << G4endl;
258
259 // Calculate total cross section for model
260
261 G4DNAGenericIonsManager *instance;
262 instance = G4DNAGenericIonsManager::Instance();
263
264 if (
265 particleDefinition != G4Proton::ProtonDefinition()
266 &&
267 particleDefinition != instance->GetIon("alpha++")
268 &&
269 particleDefinition != instance->GetIon("alpha+")
270 &&
271 particleDefinition != instance->GetIon("helium")
272 )
273
274 return 0;
275
276 G4double lowLim = 0;
277 G4double highLim = 0;
278 G4double crossSection = 0.;
279
280 if (flagMaterialIsWater)
281 {
282 const G4String& particleName = particleDefinition->GetParticleName();
283
284 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
285 pos1 = lowEnergyLimit.find(particleName);
286
287 if (pos1 != lowEnergyLimit.end())
288 {
289 lowLim = pos1->second;
290 }
291
292 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
293 pos2 = highEnergyLimit.find(particleName);
294
295 if (pos2 != highEnergyLimit.end())
296 {
297 highLim = pos2->second;
298 }
299
300 if (k >= lowLim && k < highLim)
301 {
302 crossSection = Sum(k,particleDefinition);
303
304 G4DNAGenericIonsManager *instance;
305 instance = G4DNAGenericIonsManager::Instance();
306
307 // add ONE or TWO electron-water excitation for alpha+ and helium
308
309 if ( particleDefinition == instance->GetIon("alpha+")
310 ||
311 particleDefinition == instance->GetIon("helium")
312 )
313 {
314 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
315
316 G4double sigmaExcitation=0;
317 G4double tmp =0.;
318
319 if (k*0.511/3728 > 7.4*eV && k*0.511/3728 < 10*keV) sigmaExcitation =
320 excitationXS->CrossSectionPerVolume(material,particleDefinition,k*0.511/3728,tmp,tmp)/densityWater;
321
322 if ( particleDefinition == instance->GetIon("alpha+") )
323 crossSection = crossSection + sigmaExcitation ;
324
325 if ( particleDefinition == instance->GetIon("helium") )
326 crossSection = crossSection + 2*sigmaExcitation ;
327
328 delete excitationXS;
329 }
330
331 }
332
333 if (verboseLevel > 3)
334 {
335 G4cout << "---> Kinetic energy(eV)=" << k/eV << G4endl;
336 G4cout << " - Cross section per water molecule (cm^2)=" << crossSection/cm/cm << G4endl;
337 G4cout << " - Cross section per water molecule (cm^-1)=" << crossSection*densityWater/(1./cm) << G4endl;
338 }
339
340 } // if (flagMaterialIsWater)
341
342 return crossSection*densityWater;
343
344}
345
346//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
347
348void G4DNAMillerGreenExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
349 const G4MaterialCutsCouple* /*couple*/,
350 const G4DynamicParticle* aDynamicParticle,
351 G4double,
352 G4double)
353{
354
355 if (verboseLevel > 3)
356 G4cout << "Calling SampleSecondaries() of G4DNAMillerGreenExcitationModel" << G4endl;
357
358 G4double particleEnergy0 = aDynamicParticle->GetKineticEnergy();
359
360 G4int level = RandomSelect(particleEnergy0,aDynamicParticle->GetDefinition());
361
362 G4double excitationEnergy = waterExcitation.ExcitationEnergy(level);
363 G4double newEnergy = particleEnergy0 - excitationEnergy;
364
365 if (newEnergy>0)
366 {
367 fParticleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
368 fParticleChangeForGamma->SetProposedKineticEnergy(newEnergy);
369 fParticleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
370 }
371
372}
373
374//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
375
376G4double G4DNAMillerGreenExcitationModel::PartialCrossSection(G4double k, G4int excitationLevel,
377 const G4ParticleDefinition* particleDefinition)
378{
379 // ( ( z * aj ) ^ omegaj ) * ( t - ej ) ^ nu
380 // sigma(t) = zEff^2 * sigma0 * --------------------------------------------
381 // jj ^ ( omegaj + nu ) + t ^ ( omegaj + nu )
382 //
383 // where t is the kinetic energy corrected by Helium mass over proton mass for Helium ions
384 //
385 // zEff is:
386 // 1 for protons
387 // 2 for alpha++
388 // and 2 - c1 S_1s - c2 S_2s - c3 S_2p for alpha+ and He
389 //
390 // Dingfelder et al., RPC 59, 255-275, 2000 from Miller and Green (1973)
391 // Formula (34) and Table 2
392
393 const G4double sigma0(1.E+8 * barn);
394 const G4double nu(1.);
395 const G4double aj[]={876.*eV, 2084.* eV, 1373.*eV, 692.*eV, 900.*eV};
396 const G4double jj[]={19820.*eV, 23490.*eV, 27770.*eV, 30830.*eV, 33080.*eV};
397 const G4double omegaj[]={0.85, 0.88, 0.88, 0.78, 0.78};
398
399 G4int particleTypeIndex = 0;
400 G4DNAGenericIonsManager* instance;
401 instance = G4DNAGenericIonsManager::Instance();
402
403 if (particleDefinition == G4Proton::ProtonDefinition()) particleTypeIndex=0;
404 if (particleDefinition == instance->GetIon("alpha++")) particleTypeIndex=1;
405 if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=2;
406 if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=3;
407
408 G4double tCorrected;
409 tCorrected = k * kineticEnergyCorrection[particleTypeIndex];
410
411 // SI - added protection
412 if (tCorrected < waterExcitation.ExcitationEnergy(excitationLevel)) return 0;
413 //
414
415 G4int z = 10;
416
417 G4double numerator;
418 numerator = std::pow(z * aj[excitationLevel], omegaj[excitationLevel]) *
419 std::pow(tCorrected - waterExcitation.ExcitationEnergy(excitationLevel), nu);
420
421 G4double power;
422 power = omegaj[excitationLevel] + nu;
423
424 G4double denominator;
425 denominator = std::pow(jj[excitationLevel], power) + std::pow(tCorrected, power);
426
427 G4double zEff = particleDefinition->GetPDGCharge() / eplus + particleDefinition->GetLeptonNumber();
428
429 zEff -= ( sCoefficient[0][particleTypeIndex] * S_1s(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[0][particleTypeIndex], 1.) +
430 sCoefficient[1][particleTypeIndex] * S_2s(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[1][particleTypeIndex], 2.) +
431 sCoefficient[2][particleTypeIndex] * S_2p(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[2][particleTypeIndex], 2.) );
432
433 G4double cross = sigma0 * zEff * zEff * numerator / denominator;
434
435 return cross;
436}
437
438//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
439
440G4int G4DNAMillerGreenExcitationModel::RandomSelect(G4double k,const G4ParticleDefinition* particle)
441{
442 G4int i = nLevels;
443 G4double value = 0.;
444 std::deque<double> values;
445
446 G4DNAGenericIonsManager *instance;
447 instance = G4DNAGenericIonsManager::Instance();
448
449 if ( particle == instance->GetIon("alpha++") ||
450 particle == G4Proton::ProtonDefinition() )
451 {
452 while (i > 0)
453 {
454 i--;
455 G4double partial = PartialCrossSection(k,i,particle);
456 values.push_front(partial);
457 value += partial;
458 }
459
460 value *= G4UniformRand();
461
462 i = nLevels;
463
464 while (i > 0)
465 {
466 i--;
467 if (values[i] > value) return i;
468 value -= values[i];
469 }
470 }
471
472 // add ONE or TWO electron-water excitation for alpha+ and helium
473
474 if ( particle == instance->GetIon("alpha+")
475 ||
476 particle == instance->GetIon("helium")
477 )
478 {
479 while (i>0)
480 {
481 i--;
482
483 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
484
485 G4double sigmaExcitation=0;
486
487 if (k*0.511/3728 > 7.4*eV && k*0.511/3728 < 10*keV) sigmaExcitation = excitationXS->PartialCrossSection(k*0.511/3728,i);
488
489 G4double partial = PartialCrossSection(k,i,particle);
490 if (particle == instance->GetIon("alpha+")) partial = PartialCrossSection(k,i,particle) + sigmaExcitation;
491 if (particle == instance->GetIon("helium")) partial = PartialCrossSection(k,i,particle) + 2*sigmaExcitation;
492 values.push_front(partial);
493 value += partial;
494 delete excitationXS;
495 }
496
497 value*=G4UniformRand();
498
499 i=5;
500 while (i>0)
501 {
502 i--;
503
504 if (values[i]>value) return i;
505
506 value-=values[i];
507 }
508 }
509
510 return 0;
511}
512
513//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
514
515G4double G4DNAMillerGreenExcitationModel::Sum(G4double k, const G4ParticleDefinition* particle)
516{
517 G4double totalCrossSection = 0.;
518
519 for (G4int i=0; i<nLevels; i++)
520 {
521 totalCrossSection += PartialCrossSection(k,i,particle);
522 }
523 return totalCrossSection;
524}
525
526//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
527
528G4double G4DNAMillerGreenExcitationModel::S_1s(G4double t,
529 G4double energyTransferred,
530 G4double slaterEffectiveCharge,
531 G4double shellNumber)
532{
533 // 1 - e^(-2r) * ( 1 + 2 r + 2 r^2)
534 // Dingfelder, in Chattanooga 2005 proceedings, formula (7)
535
536 G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
537 G4double value = 1. - std::exp(-2 * r) * ( ( 2. * r + 2. ) * r + 1. );
538
539 return value;
540}
541
542
543//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
544
545G4double G4DNAMillerGreenExcitationModel::S_2s(G4double t,
546 G4double energyTransferred,
547 G4double slaterEffectiveCharge,
548 G4double shellNumber)
549{
550 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 2 r^4)
551 // Dingfelder, in Chattanooga 2005 proceedings, formula (8)
552
553 G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
554 G4double value = 1. - std::exp(-2 * r) * (((2. * r * r + 2.) * r + 2.) * r + 1.);
555
556 return value;
557
558}
559
560//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
561
562G4double G4DNAMillerGreenExcitationModel::S_2p(G4double t,
563 G4double energyTransferred,
564 G4double slaterEffectiveCharge,
565 G4double shellNumber)
566{
567 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 4/3 r^3 + 2/3 r^4)
568 // Dingfelder, in Chattanooga 2005 proceedings, formula (9)
569
570 G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
571 G4double value = 1. - std::exp(-2 * r) * (((( 2./3. * r + 4./3.) * r + 2.) * r + 2.) * r + 1.);
572
573 return value;
574}
575
576//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
577
578G4double G4DNAMillerGreenExcitationModel::R(G4double t,
579 G4double energyTransferred,
580 G4double slaterEffectiveCharge,
581 G4double shellNumber)
582{
583 // tElectron = m_electron / m_alpha * t
584 // Dingfelder, in Chattanooga 2005 proceedings, p 4
585
586 G4double tElectron = 0.511/3728. * t;
587 G4double value = 2. * tElectron * slaterEffectiveCharge / (energyTransferred * shellNumber);
588
589 return value;
590}
591
Note: See TracBrowser for help on using the repository browser.