source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNAMillerGreenExcitationModel.cc @ 1250

Last change on this file since 1250 was 1228, checked in by garnier, 15 years ago

update geant4.9.3 tag

File size: 18.2 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4DNAMillerGreenExcitationModel.cc,v 1.6 2009/08/13 11:32:47 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-03 $
28//
29
30#include "G4DNAMillerGreenExcitationModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4DNAMillerGreenExcitationModel::G4DNAMillerGreenExcitationModel(const G4ParticleDefinition*,
39                                             const G4String& nam)
40:G4VEmModel(nam),isInitialised(false)
41{
42
43  verboseLevel= 0;
44  // Verbosity scale:
45  // 0 = nothing
46  // 1 = warning for energy non-conservation
47  // 2 = details of energy budget
48  // 3 = calculation of cross sections, file openings, sampling of atoms
49  // 4 = entering in methods
50 
51  if( verboseLevel>0 ) 
52  { 
53    G4cout << "Miller & Green excitation model is constructed " << G4endl;
54  }
55}
56
57//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
58
59G4DNAMillerGreenExcitationModel::~G4DNAMillerGreenExcitationModel()
60{}
61
62//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
63
64void G4DNAMillerGreenExcitationModel::Initialise(const G4ParticleDefinition* particle,
65                                       const G4DataVector& /*cuts*/)
66{
67
68  if (verboseLevel > 3)
69    G4cout << "Calling G4DNAMillerGreenExcitationModel::Initialise()" << G4endl;
70
71  // Energy limits
72 
73  G4DNAGenericIonsManager *instance;
74  instance = G4DNAGenericIonsManager::Instance();
75  G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
76  G4ParticleDefinition* alphaPlusPlusDef = instance->GetIon("alpha++");
77  G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+");
78  G4ParticleDefinition* heliumDef = instance->GetIon("helium");
79
80  G4String proton;
81  G4String alphaPlusPlus;
82  G4String alphaPlus;
83  G4String helium;
84
85  if (protonDef != 0)
86  {
87    proton = protonDef->GetParticleName();
88    lowEnergyLimit[proton] = 10. * eV;
89    highEnergyLimit[proton] = 500. * keV;
90   
91    kineticEnergyCorrection[0] = 1.;
92    slaterEffectiveCharge[0][0] = 0.;
93    slaterEffectiveCharge[1][0] = 0.;
94    slaterEffectiveCharge[2][0] = 0.;
95    sCoefficient[0][0] = 0.;
96    sCoefficient[1][0] = 0.;
97    sCoefficient[2][0] = 0.;
98  }
99  else
100  {
101    G4Exception("G4DNAMillerGreenExcitationModel::Initialise: proton is not defined");
102  }
103
104  if (alphaPlusPlusDef != 0)
105  {
106    alphaPlusPlus = alphaPlusPlusDef->GetParticleName();
107    lowEnergyLimit[alphaPlusPlus] = 1. * keV;
108    highEnergyLimit[alphaPlusPlus] = 10. * MeV;
109
110    kineticEnergyCorrection[1] = 0.9382723/3.727417;
111    slaterEffectiveCharge[0][1]=0.;
112    slaterEffectiveCharge[1][1]=0.;
113    slaterEffectiveCharge[2][1]=0.;
114    sCoefficient[0][1]=0.;
115    sCoefficient[1][1]=0.;
116    sCoefficient[2][1]=0.;
117  }
118  else
119  {
120      G4Exception("G4DNAMillerGreenExcitationModel::Initialise: alphaPlusPlus is not defined");
121  }
122
123  if (alphaPlusDef != 0)
124  {
125    alphaPlus = alphaPlusDef->GetParticleName();
126    lowEnergyLimit[alphaPlus] = 1. * keV;
127    highEnergyLimit[alphaPlus] = 10. * MeV;
128
129    kineticEnergyCorrection[2] = 0.9382723/3.727417;
130    slaterEffectiveCharge[0][2]=2.0;
131    slaterEffectiveCharge[1][2]=1.15;
132    slaterEffectiveCharge[2][2]=1.15;
133    sCoefficient[0][2]=0.7;
134    sCoefficient[1][2]=0.15;
135    sCoefficient[2][2]=0.15;
136  }
137  else
138  {
139    G4Exception("G4DNAMillerGreenExcitationModel::Initialise: alphaPlus is not defined");
140  }
141
142  if (heliumDef != 0)
143  {
144    helium = heliumDef->GetParticleName();
145    lowEnergyLimit[helium] = 1. * keV;
146    highEnergyLimit[helium] = 10. * MeV;
147   
148    kineticEnergyCorrection[3] = 0.9382723/3.727417;
149    slaterEffectiveCharge[0][3]=1.7;
150    slaterEffectiveCharge[1][3]=1.15;
151    slaterEffectiveCharge[2][3]=1.15;
152    sCoefficient[0][3]=0.5;
153    sCoefficient[1][3]=0.25;
154    sCoefficient[2][3]=0.25;
155  }
156  else
157  {
158    G4Exception("G4DNAMillerGreenExcitationModel::Initialise: helium is not defined");
159  }
160
161  if (particle==protonDef) 
162  {
163    SetLowEnergyLimit(lowEnergyLimit[proton]);
164    SetHighEnergyLimit(highEnergyLimit[proton]);
165  }
166
167  if (particle==alphaPlusPlusDef) 
168  {
169    SetLowEnergyLimit(lowEnergyLimit[alphaPlusPlus]);
170    SetHighEnergyLimit(highEnergyLimit[alphaPlusPlus]);
171  }
172
173  if (particle==alphaPlusDef) 
174  {
175    SetLowEnergyLimit(lowEnergyLimit[alphaPlus]);
176    SetHighEnergyLimit(highEnergyLimit[alphaPlus]);
177  }
178
179  if (particle==heliumDef) 
180  {
181    SetLowEnergyLimit(lowEnergyLimit[helium]);
182    SetHighEnergyLimit(highEnergyLimit[helium]);
183  }
184
185  //
186 
187  nLevels = waterExcitation.NumberOfLevels();
188
189  //
190  if( verboseLevel>0 ) 
191  { 
192    G4cout << "Miller & Green excitation model is initialized " << G4endl
193           << "Energy range: "
194           << LowEnergyLimit() / eV << " eV - "
195           << HighEnergyLimit() / keV << " keV for "
196           << particle->GetParticleName()
197           << G4endl;
198  }
199 
200  if(!isInitialised) 
201  {
202    isInitialised = true;
203 
204    if(pParticleChange)
205      fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
206    else
207      fParticleChangeForGamma = new G4ParticleChangeForGamma();
208  }   
209
210  // InitialiseElementSelectors(particle,cuts);
211 
212  // Test if water material
213
214  flagMaterialIsWater= false;
215  densityWater = 0;
216
217  const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
218
219  if(theCoupleTable) 
220  {
221    G4int numOfCouples = theCoupleTable->GetTableSize();
222 
223    if(numOfCouples>0) 
224    {
225          for (G4int i=0; i<numOfCouples; i++) 
226          {
227            const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
228            const G4Material* material = couple->GetMaterial();
229
230            if (material->GetName() == "G4_WATER") 
231            {
232              G4double density = material->GetAtomicNumDensityVector()[1];
233              flagMaterialIsWater = true; 
234              densityWater = density; 
235             
236              if (verboseLevel > 3) 
237              G4cout << "****** Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
238            }
239 
240          }
241
242    } // if(numOfCouples>0)
243
244  } // if (theCoupleTable)
245
246}
247
248//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
249
250G4double G4DNAMillerGreenExcitationModel::CrossSectionPerVolume(const G4Material* material,
251                                           const G4ParticleDefinition* particleDefinition,
252                                           G4double k,
253                                           G4double,
254                                           G4double)
255{
256  if (verboseLevel > 3)
257    G4cout << "Calling CrossSectionPerVolume() of G4DNAMillerGreenExcitationModel" << G4endl;
258
259 // Calculate total cross section for model
260
261  G4DNAGenericIonsManager *instance;
262  instance = G4DNAGenericIonsManager::Instance();
263
264  if (
265      particleDefinition != G4Proton::ProtonDefinition()
266      &&
267      particleDefinition != instance->GetIon("alpha++")
268      &&
269      particleDefinition != instance->GetIon("alpha+")
270      &&
271      particleDefinition != instance->GetIon("helium")
272     )
273           
274    return 0;
275
276  G4double lowLim = 0;
277  G4double highLim = 0;
278  G4double crossSection = 0.;
279
280  if (flagMaterialIsWater)
281  {
282    const G4String& particleName = particleDefinition->GetParticleName();
283
284    std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
285    pos1 = lowEnergyLimit.find(particleName);
286
287    if (pos1 != lowEnergyLimit.end())
288    {
289      lowLim = pos1->second;
290    }
291
292    std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
293    pos2 = highEnergyLimit.find(particleName);
294
295    if (pos2 != highEnergyLimit.end())
296    {
297      highLim = pos2->second;
298    }
299
300    if (k >= lowLim && k < highLim)
301    {
302      crossSection = Sum(k,particleDefinition);
303
304      G4DNAGenericIonsManager *instance;
305      instance = G4DNAGenericIonsManager::Instance();
306
307      // add ONE or TWO electron-water excitation for alpha+ and helium
308 
309      if ( particleDefinition == instance->GetIon("alpha+") 
310           ||
311           particleDefinition == instance->GetIon("helium")
312         ) 
313      {
314          G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
315
316          G4double sigmaExcitation=0;
317          G4double tmp =0.;
318         
319          if (k*0.511/3728 > 7.4*eV && k*0.511/3728 < 10*keV) sigmaExcitation = 
320            excitationXS->CrossSectionPerVolume(material,particleDefinition,k*0.511/3728,tmp,tmp)/densityWater;
321       
322          if ( particleDefinition == instance->GetIon("alpha+") ) 
323            crossSection = crossSection +  sigmaExcitation ;
324         
325          if ( particleDefinition == instance->GetIon("helium") ) 
326            crossSection = crossSection + 2*sigmaExcitation ;
327         
328          delete excitationXS;
329      }     
330
331    }
332
333    if (verboseLevel > 3)
334    {
335      G4cout << "---> Kinetic energy(eV)=" << k/eV << G4endl;
336      G4cout << " - Cross section per water molecule (cm^2)=" << crossSection/cm/cm << G4endl;
337      G4cout << " - Cross section per water molecule (cm^-1)=" << crossSection*densityWater/(1./cm) << G4endl;
338    } 
339
340  } // if (flagMaterialIsWater)
341
342 return crossSection*densityWater;                 
343
344}
345
346//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
347
348void G4DNAMillerGreenExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
349                                              const G4MaterialCutsCouple* /*couple*/,
350                                              const G4DynamicParticle* aDynamicParticle,
351                                              G4double,
352                                              G4double)
353{
354
355  if (verboseLevel > 3)
356    G4cout << "Calling SampleSecondaries() of G4DNAMillerGreenExcitationModel" << G4endl;
357
358  G4double particleEnergy0 = aDynamicParticle->GetKineticEnergy();
359 
360  G4int level = RandomSelect(particleEnergy0,aDynamicParticle->GetDefinition());
361
362  G4double excitationEnergy = waterExcitation.ExcitationEnergy(level);
363  G4double newEnergy = particleEnergy0 - excitationEnergy;
364 
365  if (newEnergy>0)
366  {
367      fParticleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
368      fParticleChangeForGamma->SetProposedKineticEnergy(newEnergy);
369      fParticleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
370  }
371
372}
373
374//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
375
376G4double G4DNAMillerGreenExcitationModel::PartialCrossSection(G4double k, G4int excitationLevel, 
377                                                                  const G4ParticleDefinition* particleDefinition)
378{
379  //                               ( ( z * aj ) ^ omegaj ) * ( t - ej ) ^ nu
380  // sigma(t) = zEff^2 * sigma0 * --------------------------------------------
381  //                               jj ^ ( omegaj + nu ) + t ^ ( omegaj + nu )
382  //
383  // where t is the kinetic energy corrected by Helium mass over proton mass for Helium ions
384  //
385  // zEff is:
386  //  1 for protons
387  //  2 for alpha++
388  //  and  2 - c1 S_1s - c2 S_2s - c3 S_2p for alpha+ and He
389  //
390  // Dingfelder et al., RPC 59, 255-275, 2000 from Miller and Green (1973)
391  // Formula (34) and Table 2
392 
393  const G4double sigma0(1.E+8 * barn);
394  const G4double nu(1.);
395  const G4double aj[]={876.*eV, 2084.* eV, 1373.*eV, 692.*eV, 900.*eV};
396  const G4double jj[]={19820.*eV, 23490.*eV, 27770.*eV, 30830.*eV, 33080.*eV};
397  const G4double omegaj[]={0.85, 0.88, 0.88, 0.78, 0.78};
398 
399  G4int particleTypeIndex = 0;
400  G4DNAGenericIonsManager* instance;
401  instance = G4DNAGenericIonsManager::Instance();
402
403  if (particleDefinition == G4Proton::ProtonDefinition()) particleTypeIndex=0;
404  if (particleDefinition == instance->GetIon("alpha++")) particleTypeIndex=1;
405  if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=2;
406  if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=3;
407 
408  G4double tCorrected;
409  tCorrected = k * kineticEnergyCorrection[particleTypeIndex];
410
411  // SI - added protection
412  if (tCorrected < waterExcitation.ExcitationEnergy(excitationLevel)) return 0;
413  //
414 
415  G4int z = 10;
416
417  G4double numerator;
418  numerator = std::pow(z * aj[excitationLevel], omegaj[excitationLevel]) * 
419    std::pow(tCorrected - waterExcitation.ExcitationEnergy(excitationLevel), nu);
420
421  G4double power;
422  power = omegaj[excitationLevel] + nu;
423
424  G4double denominator;
425  denominator = std::pow(jj[excitationLevel], power) + std::pow(tCorrected, power);
426
427  G4double zEff = particleDefinition->GetPDGCharge() / eplus + particleDefinition->GetLeptonNumber();
428
429  zEff -= ( sCoefficient[0][particleTypeIndex] * S_1s(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[0][particleTypeIndex], 1.) +
430            sCoefficient[1][particleTypeIndex] * S_2s(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[1][particleTypeIndex], 2.) +
431            sCoefficient[2][particleTypeIndex] * S_2p(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[2][particleTypeIndex], 2.) );
432
433  G4double cross = sigma0 * zEff * zEff * numerator / denominator;
434
435  return cross;
436}
437
438//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
439
440G4int G4DNAMillerGreenExcitationModel::RandomSelect(G4double k,const G4ParticleDefinition* particle)
441{
442  G4int i = nLevels;
443  G4double value = 0.;
444  std::deque<double> values;
445 
446  G4DNAGenericIonsManager *instance;
447  instance = G4DNAGenericIonsManager::Instance();
448
449  if ( particle == instance->GetIon("alpha++") ||
450       particle == G4Proton::ProtonDefinition()  )
451  { 
452     while (i > 0)
453     {
454        i--;
455        G4double partial = PartialCrossSection(k,i,particle);
456        values.push_front(partial);
457        value += partial;
458     }
459
460     value *= G4UniformRand();
461   
462     i = nLevels;
463
464     while (i > 0)
465     {
466        i--;
467        if (values[i] > value) return i;
468        value -= values[i];
469     }
470  } 
471
472  // add ONE or TWO electron-water excitation for alpha+ and helium
473   
474  if ( particle == instance->GetIon("alpha+") 
475       ||
476       particle == instance->GetIon("helium")
477     ) 
478  {
479    while (i>0)
480    {
481          i--;
482         
483          G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
484         
485          G4double sigmaExcitation=0;
486
487          if (k*0.511/3728 > 7.4*eV && k*0.511/3728 < 10*keV) sigmaExcitation = excitationXS->PartialCrossSection(k*0.511/3728,i);
488 
489          G4double partial = PartialCrossSection(k,i,particle);
490          if (particle == instance->GetIon("alpha+")) partial = PartialCrossSection(k,i,particle) + sigmaExcitation;
491          if (particle == instance->GetIon("helium")) partial = PartialCrossSection(k,i,particle) + 2*sigmaExcitation;
492          values.push_front(partial);
493          value += partial;
494          delete excitationXS;
495    }
496 
497    value*=G4UniformRand();
498 
499    i=5;
500    while (i>0)
501    {
502          i--;
503   
504          if (values[i]>value) return i;
505 
506          value-=values[i];
507    }
508  }     
509
510  return 0;
511}
512
513//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
514
515G4double G4DNAMillerGreenExcitationModel::Sum(G4double k, const G4ParticleDefinition* particle)
516{
517  G4double totalCrossSection = 0.;
518
519  for (G4int i=0; i<nLevels; i++)
520  {
521    totalCrossSection += PartialCrossSection(k,i,particle);
522  }
523  return totalCrossSection;
524}
525
526//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
527
528G4double G4DNAMillerGreenExcitationModel::S_1s(G4double t,
529                                                          G4double energyTransferred,
530                                                          G4double slaterEffectiveCharge,
531                                                          G4double shellNumber)
532{
533  // 1 - e^(-2r) * ( 1 + 2 r + 2 r^2)
534  // Dingfelder, in Chattanooga 2005 proceedings, formula (7)
535 
536  G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
537  G4double value = 1. - std::exp(-2 * r) * ( ( 2. * r + 2. ) * r + 1. );
538 
539  return value;
540}
541
542
543//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
544
545G4double G4DNAMillerGreenExcitationModel::S_2s(G4double t,
546                                                          G4double energyTransferred,
547                                                          G4double slaterEffectiveCharge,
548                                                          G4double shellNumber)
549{
550  // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 2 r^4)
551  // Dingfelder, in Chattanooga 2005 proceedings, formula (8)
552
553  G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
554  G4double value =  1. - std::exp(-2 * r) * (((2. * r * r + 2.) * r + 2.) * r + 1.);
555
556  return value;
557 
558}
559
560//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
561
562G4double G4DNAMillerGreenExcitationModel::S_2p(G4double t,
563                                                          G4double energyTransferred,
564                                                          G4double slaterEffectiveCharge,
565                                                          G4double shellNumber)
566{
567  // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 4/3 r^3 + 2/3 r^4)
568  // Dingfelder, in Chattanooga 2005 proceedings, formula (9)
569
570  G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
571  G4double value =  1. - std::exp(-2 * r) * (((( 2./3. * r + 4./3.) * r + 2.) * r + 2.) * r  + 1.);
572
573  return value;
574}
575
576//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
577
578G4double G4DNAMillerGreenExcitationModel::R(G4double t,
579                                                       G4double energyTransferred,
580                                                       G4double slaterEffectiveCharge,
581                                                       G4double shellNumber) 
582{
583  // tElectron = m_electron / m_alpha * t
584  // Dingfelder, in Chattanooga 2005 proceedings, p 4
585
586  G4double tElectron = 0.511/3728. * t;
587  G4double value = 2. * tElectron * slaterEffectiveCharge / (energyTransferred * shellNumber);
588 
589  return value;
590}
591
Note: See TracBrowser for help on using the repository browser.