source: trunk/source/processes/electromagnetic/lowenergy/src/G4DNAMillerGreenExcitationModel.cc@ 992

Last change on this file since 992 was 968, checked in by garnier, 17 years ago

fichier ajoutes

File size: 18.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id: G4DNAMillerGreenExcitationModel.cc,v 1.3 2009/02/16 11:00:11 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28//
29
30#include "G4DNAMillerGreenExcitationModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4DNAMillerGreenExcitationModel::G4DNAMillerGreenExcitationModel(const G4ParticleDefinition*,
39 const G4String& nam)
40:G4VEmModel(nam),isInitialised(false)
41{
42
43 verboseLevel= 0;
44 // Verbosity scale:
45 // 0 = nothing
46 // 1 = warning for energy non-conservation
47 // 2 = details of energy budget
48 // 3 = calculation of cross sections, file openings, sampling of atoms
49 // 4 = entering in methods
50
51 G4cout << "Miller & Green excitation model is constructed " << G4endl;
52
53}
54
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
56
57G4DNAMillerGreenExcitationModel::~G4DNAMillerGreenExcitationModel()
58{}
59
60//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
61
62void G4DNAMillerGreenExcitationModel::Initialise(const G4ParticleDefinition* particle,
63 const G4DataVector& /*cuts*/)
64{
65
66 if (verboseLevel > 3)
67 G4cout << "Calling G4DNAMillerGreenExcitationModel::Initialise()" << G4endl;
68
69 // Energy limits
70
71 G4DNAGenericIonsManager *instance;
72 instance = G4DNAGenericIonsManager::Instance();
73 G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
74 G4ParticleDefinition* alphaPlusPlusDef = instance->GetIon("alpha++");
75 G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+");
76 G4ParticleDefinition* heliumDef = instance->GetIon("helium");
77
78 G4String proton;
79 G4String alphaPlusPlus;
80 G4String alphaPlus;
81 G4String helium;
82
83 if (protonDef != 0)
84 {
85 proton = protonDef->GetParticleName();
86 lowEnergyLimit[proton] = 10. * eV;
87 highEnergyLimit[proton] = 500. * keV;
88
89 kineticEnergyCorrection[0] = 1.;
90 slaterEffectiveCharge[0][0] = 0.;
91 slaterEffectiveCharge[1][0] = 0.;
92 slaterEffectiveCharge[2][0] = 0.;
93 sCoefficient[0][0] = 0.;
94 sCoefficient[1][0] = 0.;
95 sCoefficient[2][0] = 0.;
96 }
97 else
98 {
99 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: proton is not defined");
100 }
101
102 if (alphaPlusPlusDef != 0)
103 {
104 alphaPlusPlus = alphaPlusPlusDef->GetParticleName();
105 lowEnergyLimit[alphaPlusPlus] = 1. * keV;
106 highEnergyLimit[alphaPlusPlus] = 10. * MeV;
107
108 kineticEnergyCorrection[1] = 0.9382723/3.727417;
109 slaterEffectiveCharge[0][1]=0.;
110 slaterEffectiveCharge[1][1]=0.;
111 slaterEffectiveCharge[2][1]=0.;
112 sCoefficient[0][1]=0.;
113 sCoefficient[1][1]=0.;
114 sCoefficient[2][1]=0.;
115 }
116 else
117 {
118 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: alphaPlusPlus is not defined");
119 }
120
121 if (alphaPlusDef != 0)
122 {
123 alphaPlus = alphaPlusDef->GetParticleName();
124 lowEnergyLimit[alphaPlus] = 1. * keV;
125 highEnergyLimit[alphaPlus] = 10. * MeV;
126
127 kineticEnergyCorrection[2] = 0.9382723/3.727417;
128 slaterEffectiveCharge[0][2]=2.0;
129 slaterEffectiveCharge[1][2]=1.15;
130 slaterEffectiveCharge[2][2]=1.15;
131 sCoefficient[0][2]=0.7;
132 sCoefficient[1][2]=0.15;
133 sCoefficient[2][2]=0.15;
134 }
135 else
136 {
137 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: alphaPlus is not defined");
138 }
139
140 if (heliumDef != 0)
141 {
142 helium = heliumDef->GetParticleName();
143 lowEnergyLimit[helium] = 1. * keV;
144 highEnergyLimit[helium] = 10. * MeV;
145
146 kineticEnergyCorrection[3] = 0.9382723/3.727417;
147 slaterEffectiveCharge[0][3]=1.7;
148 slaterEffectiveCharge[1][3]=1.15;
149 slaterEffectiveCharge[2][3]=1.15;
150 sCoefficient[0][3]=0.5;
151 sCoefficient[1][3]=0.25;
152 sCoefficient[2][3]=0.25;
153 }
154 else
155 {
156 G4Exception("G4DNAMillerGreenExcitationModel::Initialise: helium is not defined");
157 }
158
159 if (particle==protonDef)
160 {
161 SetLowEnergyLimit(lowEnergyLimit[proton]);
162 SetHighEnergyLimit(highEnergyLimit[proton]);
163 }
164
165 if (particle==alphaPlusPlusDef)
166 {
167 SetLowEnergyLimit(lowEnergyLimit[alphaPlusPlus]);
168 SetHighEnergyLimit(highEnergyLimit[alphaPlusPlus]);
169 }
170
171 if (particle==alphaPlusDef)
172 {
173 SetLowEnergyLimit(lowEnergyLimit[alphaPlus]);
174 SetHighEnergyLimit(highEnergyLimit[alphaPlus]);
175 }
176
177 if (particle==heliumDef)
178 {
179 SetLowEnergyLimit(lowEnergyLimit[helium]);
180 SetHighEnergyLimit(highEnergyLimit[helium]);
181 }
182
183 //
184
185 nLevels = waterExcitation.NumberOfLevels();
186
187 //
188
189 G4cout << "Miller & Green excitation model is initialized " << G4endl
190 << "Energy range: "
191 << LowEnergyLimit() / eV << " eV - "
192 << HighEnergyLimit() / keV << " keV for "
193 << particle->GetParticleName()
194 << G4endl;
195
196 if(!isInitialised)
197 {
198 isInitialised = true;
199
200 if(pParticleChange)
201 fParticleChangeForGamma = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
202 else
203 fParticleChangeForGamma = new G4ParticleChangeForGamma();
204 }
205
206 // InitialiseElementSelectors(particle,cuts);
207
208 // Test if water material
209
210 flagMaterialIsWater= false;
211 densityWater = 0;
212
213 const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable();
214
215 if(theCoupleTable)
216 {
217 G4int numOfCouples = theCoupleTable->GetTableSize();
218
219 if(numOfCouples>0)
220 {
221 for (G4int i=0; i<numOfCouples; i++)
222 {
223 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(i);
224 const G4Material* material = couple->GetMaterial();
225
226 size_t j = material->GetNumberOfElements();
227 while (j>0)
228 {
229 j--;
230 const G4Element* element(material->GetElement(j));
231 if (element->GetZ() == 8.)
232 {
233 G4double density = material->GetAtomicNumDensityVector()[j];
234 if (density > 0.)
235 {
236 flagMaterialIsWater = true;
237 densityWater = density;
238
239 if (verboseLevel > 3)
240 G4cout << "Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl;
241 }
242 }
243 }
244
245 }
246 } // if(numOfCouples>0)
247
248 } // if (theCoupleTable)
249
250}
251
252//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
253
254G4double G4DNAMillerGreenExcitationModel::CrossSectionPerVolume(const G4Material* material,
255 const G4ParticleDefinition* particleDefinition,
256 G4double k,
257 G4double,
258 G4double)
259{
260 if (verboseLevel > 3)
261 G4cout << "Calling CrossSectionPerVolume() of G4DNAMillerGreenExcitationModel" << G4endl;
262
263 // Calculate total cross section for model
264
265 G4DNAGenericIonsManager *instance;
266 instance = G4DNAGenericIonsManager::Instance();
267
268 if (
269 particleDefinition != G4Proton::ProtonDefinition()
270 &&
271 particleDefinition != instance->GetIon("alpha++")
272 &&
273 particleDefinition != instance->GetIon("alpha+")
274 &&
275 particleDefinition != instance->GetIon("helium")
276 )
277
278 return 0;
279
280 G4double lowLim = 0;
281 G4double highLim = 0;
282 G4double crossSection = 0.;
283
284 if (flagMaterialIsWater)
285 {
286 const G4String& particleName = particleDefinition->GetParticleName();
287
288 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
289 pos1 = lowEnergyLimit.find(particleName);
290
291 if (pos1 != lowEnergyLimit.end())
292 {
293 lowLim = pos1->second;
294 }
295
296 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
297 pos2 = highEnergyLimit.find(particleName);
298
299 if (pos2 != highEnergyLimit.end())
300 {
301 highLim = pos2->second;
302 }
303
304 if (k >= lowLim && k < highLim)
305 {
306 crossSection = Sum(k,particleDefinition);
307
308 G4DNAGenericIonsManager *instance;
309 instance = G4DNAGenericIonsManager::Instance();
310
311 // add ONE or TWO electron-water excitation for alpha+ and helium
312
313 if ( particleDefinition == instance->GetIon("alpha+")
314 ||
315 particleDefinition == instance->GetIon("helium")
316 )
317 {
318 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
319
320 G4double sigmaExcitation=0;
321 G4double tmp =0.;
322
323 if (k*0.511/3728 > 7.4*eV && k*0.511/3728 < 10*keV) sigmaExcitation =
324 excitationXS->CrossSectionPerVolume(material,particleDefinition,k*0.511/3728,tmp,tmp)/densityWater;
325
326 if ( particleDefinition == instance->GetIon("alpha+") )
327 crossSection = crossSection + sigmaExcitation ;
328
329 if ( particleDefinition == instance->GetIon("helium") )
330 crossSection = crossSection + 2*sigmaExcitation ;
331
332 delete excitationXS;
333 }
334
335 }
336
337 if (verboseLevel > 3)
338 {
339 G4cout << "---> Kinetic energy(eV)=" << k/eV << G4endl;
340 G4cout << " - Cross section per water molecule (cm^2)=" << crossSection/cm/cm << G4endl;
341 G4cout << " - Cross section per water molecule (cm^-1)=" << crossSection*densityWater/(1./cm) << G4endl;
342 }
343
344 } // if (flagMaterialIsWater)
345
346 return crossSection*densityWater;
347
348}
349
350//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
351
352void G4DNAMillerGreenExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
353 const G4MaterialCutsCouple* /*couple*/,
354 const G4DynamicParticle* aDynamicParticle,
355 G4double,
356 G4double)
357{
358
359 if (verboseLevel > 3)
360 G4cout << "Calling SampleSecondaries() of G4DNAMillerGreenExcitationModel" << G4endl;
361
362 G4double particleEnergy0 = aDynamicParticle->GetKineticEnergy();
363
364 G4int level = RandomSelect(particleEnergy0,aDynamicParticle->GetDefinition());
365
366 G4double excitationEnergy = waterExcitation.ExcitationEnergy(level);
367 G4double newEnergy = particleEnergy0 - excitationEnergy;
368
369 if (newEnergy>0)
370 {
371 fParticleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
372 fParticleChangeForGamma->SetProposedKineticEnergy(newEnergy);
373 fParticleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
374 }
375
376}
377
378//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
379
380G4double G4DNAMillerGreenExcitationModel::PartialCrossSection(G4double k, G4int excitationLevel,
381 const G4ParticleDefinition* particleDefinition)
382{
383 // ( ( z * aj ) ^ omegaj ) * ( t - ej ) ^ nu
384 // sigma(t) = zEff^2 * sigma0 * --------------------------------------------
385 // jj ^ ( omegaj + nu ) + t ^ ( omegaj + nu )
386 //
387 // where t is the kinetic energy corrected by Helium mass over proton mass for Helium ions
388 //
389 // zEff is:
390 // 1 for protons
391 // 2 for alpha++
392 // and 2 - c1 S_1s - c2 S_2s - c3 S_2p for alpha+ and He
393 //
394 // Dingfelder et al., RPC 59, 255-275, 2000 from Miller and Green (1973)
395 // Formula (34) and Table 2
396
397 const G4double sigma0(1.E+8 * barn);
398 const G4double nu(1.);
399 const G4double aj[]={876.*eV, 2084.* eV, 1373.*eV, 692.*eV, 900.*eV};
400 const G4double jj[]={19820.*eV, 23490.*eV, 27770.*eV, 30830.*eV, 33080.*eV};
401 const G4double omegaj[]={0.85, 0.88, 0.88, 0.78, 0.78};
402
403 G4int particleTypeIndex = 0;
404 G4DNAGenericIonsManager* instance;
405 instance = G4DNAGenericIonsManager::Instance();
406
407 if (particleDefinition == G4Proton::ProtonDefinition()) particleTypeIndex=0;
408 if (particleDefinition == instance->GetIon("alpha++")) particleTypeIndex=1;
409 if (particleDefinition == instance->GetIon("alpha+")) particleTypeIndex=2;
410 if (particleDefinition == instance->GetIon("helium")) particleTypeIndex=3;
411
412 G4double tCorrected;
413 tCorrected = k * kineticEnergyCorrection[particleTypeIndex];
414
415 // SI - added protection
416 if (tCorrected < waterExcitation.ExcitationEnergy(excitationLevel)) return 0;
417 //
418
419 G4int z = 10;
420
421 G4double numerator;
422 numerator = std::pow(z * aj[excitationLevel], omegaj[excitationLevel]) *
423 std::pow(tCorrected - waterExcitation.ExcitationEnergy(excitationLevel), nu);
424
425 G4double power;
426 power = omegaj[excitationLevel] + nu;
427
428 G4double denominator;
429 denominator = std::pow(jj[excitationLevel], power) + std::pow(tCorrected, power);
430
431 G4double zEff = particleDefinition->GetPDGCharge() / eplus + particleDefinition->GetLeptonNumber();
432
433 zEff -= ( sCoefficient[0][particleTypeIndex] * S_1s(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[0][particleTypeIndex], 1.) +
434 sCoefficient[1][particleTypeIndex] * S_2s(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[1][particleTypeIndex], 2.) +
435 sCoefficient[2][particleTypeIndex] * S_2p(k, waterExcitation.ExcitationEnergy(excitationLevel), slaterEffectiveCharge[2][particleTypeIndex], 2.) );
436
437 G4double cross = sigma0 * zEff * zEff * numerator / denominator;
438
439 return cross;
440}
441
442//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
443
444G4int G4DNAMillerGreenExcitationModel::RandomSelect(G4double k,const G4ParticleDefinition* particle)
445{
446 G4int i = nLevels;
447 G4double value = 0.;
448 std::deque<double> values;
449
450 G4DNAGenericIonsManager *instance;
451 instance = G4DNAGenericIonsManager::Instance();
452
453 if ( particle == instance->GetIon("alpha++") ||
454 particle == G4Proton::ProtonDefinition() )
455 {
456 while (i > 0)
457 {
458 i--;
459 G4double partial = PartialCrossSection(k,i,particle);
460 values.push_front(partial);
461 value += partial;
462 }
463
464 value *= G4UniformRand();
465
466 i = nLevels;
467
468 while (i > 0)
469 {
470 i--;
471 if (values[i] > value) return i;
472 value -= values[i];
473 }
474 }
475
476 // add ONE or TWO electron-water excitation for alpha+ and helium
477
478 if ( particle == instance->GetIon("alpha+")
479 ||
480 particle == instance->GetIon("helium")
481 )
482 {
483 while (i>0)
484 {
485 i--;
486
487 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
488
489 G4double sigmaExcitation=0;
490
491 if (k*0.511/3728 > 7.4*eV && k*0.511/3728 < 10*keV) sigmaExcitation = excitationXS->PartialCrossSection(k*0.511/3728,i);
492
493 G4double partial = PartialCrossSection(k,i,particle);
494 if (particle == instance->GetIon("alpha+")) partial = PartialCrossSection(k,i,particle) + sigmaExcitation;
495 if (particle == instance->GetIon("helium")) partial = PartialCrossSection(k,i,particle) + 2*sigmaExcitation;
496 values.push_front(partial);
497 value += partial;
498 delete excitationXS;
499 }
500
501 value*=G4UniformRand();
502
503 i=5;
504 while (i>0)
505 {
506 i--;
507
508 if (values[i]>value) return i;
509
510 value-=values[i];
511 }
512 }
513
514 return 0;
515}
516
517//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
518
519G4double G4DNAMillerGreenExcitationModel::Sum(G4double k, const G4ParticleDefinition* particle)
520{
521 G4double totalCrossSection = 0.;
522
523 for (G4int i=0; i<nLevels; i++)
524 {
525 totalCrossSection += PartialCrossSection(k,i,particle);
526 }
527 return totalCrossSection;
528}
529
530//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
531
532G4double G4DNAMillerGreenExcitationModel::S_1s(G4double t,
533 G4double energyTransferred,
534 G4double slaterEffectiveCharge,
535 G4double shellNumber)
536{
537 // 1 - e^(-2r) * ( 1 + 2 r + 2 r^2)
538 // Dingfelder, in Chattanooga 2005 proceedings, formula (7)
539
540 G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
541 G4double value = 1. - std::exp(-2 * r) * ( ( 2. * r + 2. ) * r + 1. );
542
543 return value;
544}
545
546
547//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
548
549G4double G4DNAMillerGreenExcitationModel::S_2s(G4double t,
550 G4double energyTransferred,
551 G4double slaterEffectiveCharge,
552 G4double shellNumber)
553{
554 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 2 r^4)
555 // Dingfelder, in Chattanooga 2005 proceedings, formula (8)
556
557 G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
558 G4double value = 1. - std::exp(-2 * r) * (((2. * r * r + 2.) * r + 2.) * r + 1.);
559
560 return value;
561
562}
563
564//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
565
566G4double G4DNAMillerGreenExcitationModel::S_2p(G4double t,
567 G4double energyTransferred,
568 G4double slaterEffectiveCharge,
569 G4double shellNumber)
570{
571 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 4/3 r^3 + 2/3 r^4)
572 // Dingfelder, in Chattanooga 2005 proceedings, formula (9)
573
574 G4double r = R(t, energyTransferred, slaterEffectiveCharge, shellNumber);
575 G4double value = 1. - std::exp(-2 * r) * (((( 2./3. * r + 4./3.) * r + 2.) * r + 2.) * r + 1.);
576
577 return value;
578}
579
580//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
581
582G4double G4DNAMillerGreenExcitationModel::R(G4double t,
583 G4double energyTransferred,
584 G4double slaterEffectiveCharge,
585 G4double shellNumber)
586{
587 // tElectron = m_electron / m_alpha * t
588 // Dingfelder, in Chattanooga 2005 proceedings, p 4
589
590 G4double tElectron = 0.511/3728. * t;
591 G4double value = 2. * tElectron * slaterEffectiveCharge / (energyTransferred * shellNumber);
592
593 return value;
594}
595
Note: See TracBrowser for help on using the repository browser.