// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4DNAScreenedRutherfordElasticModel.cc,v 1.4 2009/02/16 11:00:11 sincerti Exp $ // GEANT4 tag $Name: geant4-09-02-ref-02 $ // #include "G4DNAScreenedRutherfordElasticModel.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4DNAScreenedRutherfordElasticModel::G4DNAScreenedRutherfordElasticModel (const G4ParticleDefinition*, const G4String& nam) :G4VEmModel(nam),isInitialised(false) { killBelowEnergy = 8.23*eV; // Minimum e- energy for energy loss by excitation lowEnergyLimit = 0 * eV; lowEnergyLimitOfModel = 7 * eV; // The model lower energy is 7 eV intermediateEnergyLimit = 200 * eV; // Switch between two final state models highEnergyLimit = 10 * MeV; SetLowEnergyLimit(lowEnergyLimit); SetHighEnergyLimit(highEnergyLimit); verboseLevel= 0; // Verbosity scale: // 0 = nothing // 1 = warning for energy non-conservation // 2 = details of energy budget // 3 = calculation of cross sections, file openings, sampling of atoms // 4 = entering in methods G4cout << "Screened Rutherford Elastic model is constructed " << G4endl << "Energy range: " << lowEnergyLimit / eV << " eV - " << highEnergyLimit / MeV << " MeV" << G4endl; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4DNAScreenedRutherfordElasticModel::~G4DNAScreenedRutherfordElasticModel() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4DNAScreenedRutherfordElasticModel::Initialise(const G4ParticleDefinition* /*particle*/, const G4DataVector& /*cuts*/) { if (verboseLevel > 3) G4cout << "Calling G4DNAScreenedRutherfordElasticModel::Initialise()" << G4endl; // Energy limits if (LowEnergyLimit() < lowEnergyLimit) { G4cout << "G4DNAScreenedRutherfordElasticModel: low energy limit increased from " << LowEnergyLimit()/eV << " eV to " << lowEnergyLimit/eV << " eV" << G4endl; SetLowEnergyLimit(lowEnergyLimit); } if (HighEnergyLimit() > highEnergyLimit) { G4cout << "G4DNAScreenedRutherfordElasticModel: high energy limit decreased from " << HighEnergyLimit()/MeV << " MeV to " << highEnergyLimit/MeV << " MeV" << G4endl; SetHighEnergyLimit(highEnergyLimit); } // Constants for final stae by Brenner & Zaider betaCoeff.push_back(7.51525); betaCoeff.push_back(-0.41912); betaCoeff.push_back(7.2017E-3); betaCoeff.push_back(-4.646E-5); betaCoeff.push_back(1.02897E-7); deltaCoeff.push_back(2.9612); deltaCoeff.push_back(-0.26376); deltaCoeff.push_back(4.307E-3); deltaCoeff.push_back(-2.6895E-5); deltaCoeff.push_back(5.83505E-8); gamma035_10Coeff.push_back(-1.7013); gamma035_10Coeff.push_back(-1.48284); gamma035_10Coeff.push_back(0.6331); gamma035_10Coeff.push_back(-0.10911); gamma035_10Coeff.push_back(8.358E-3); gamma035_10Coeff.push_back(-2.388E-4); gamma10_100Coeff.push_back(-3.32517); gamma10_100Coeff.push_back(0.10996); gamma10_100Coeff.push_back(-4.5255E-3); gamma10_100Coeff.push_back(5.8372E-5); gamma10_100Coeff.push_back(-2.4659E-7); gamma100_200Coeff.push_back(2.4775E-2); gamma100_200Coeff.push_back(-2.96264E-5); gamma100_200Coeff.push_back(-1.20655E-7); // G4cout << "Screened Rutherford elastic model is initialized " << G4endl << "Energy range: " << LowEnergyLimit() / eV << " eV - " << HighEnergyLimit() / MeV << " MeV" << G4endl; if(!isInitialised) { isInitialised = true; if(pParticleChange) fParticleChangeForGamma = reinterpret_cast(pParticleChange); else fParticleChangeForGamma = new G4ParticleChangeForGamma(); } // InitialiseElementSelectors(particle,cuts); // Test if water material flagMaterialIsWater= false; densityWater = 0; const G4ProductionCutsTable* theCoupleTable = G4ProductionCutsTable::GetProductionCutsTable(); if(theCoupleTable) { G4int numOfCouples = theCoupleTable->GetTableSize(); if(numOfCouples>0) { for (G4int i=0; iGetMaterialCutsCouple(i); const G4Material* material = couple->GetMaterial(); size_t j = material->GetNumberOfElements(); while (j>0) { j--; const G4Element* element(material->GetElement(j)); if (element->GetZ() == 8.) { G4double density = material->GetAtomicNumDensityVector()[j]; if (density > 0.) { flagMaterialIsWater = true; densityWater = density; if (verboseLevel > 3) G4cout << "Water material is found with density(cm^-3)=" << density/(cm*cm*cm) << G4endl; } } } } } // if(numOfCouples>0) } // if (theCoupleTable) } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4DNAScreenedRutherfordElasticModel::CrossSectionPerVolume(const G4Material*, const G4ParticleDefinition*, G4double ekin, G4double, G4double) { if (verboseLevel > 3) G4cout << "Calling CrossSectionPerVolume() of G4DNAScreenedRutherfordElasticModel" << G4endl; // Calculate total cross section for model G4double sigma=0; if (flagMaterialIsWater) { if (ekin >= lowEnergyLimitOfModel && ekin < highEnergyLimit) { G4double z = 10.; G4double n = ScreeningFactor(ekin,z); G4double crossSection = RutherfordCrossSection(ekin, z); sigma = pi * crossSection / (n * (n + 1.)); } if (verboseLevel > 3) { G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl; G4cout << " - Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl; G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*densityWater/(1./cm) << G4endl; } } // if (flagMaterialIsWater) return sigma*densityWater; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4DNAScreenedRutherfordElasticModel::RutherfordCrossSection(G4double k, G4double z) { // // e^4 / K + m_e c^2 \^2 // sigma_Ruth(K) = Z (Z+1) -------------------- | --------------------- | // (4 pi epsilon_0)^2 \ K * (K + 2 m_e c^2) / // // Where K is the electron non-relativistic kinetic energy // // NIM 155, pp. 145-156, 1978 G4double length =(e_squared * (k + electron_mass_c2)) / (4 * pi *epsilon0 * k * ( k + 2 * electron_mass_c2)); G4double cross = z * ( z + 1) * length * length; return cross; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4DNAScreenedRutherfordElasticModel::ScreeningFactor(G4double k, G4double z) { // // alpha_1 + beta_1 ln(K/eV) constK Z^(2/3) // n(T) = -------------------------- ----------------- // K/(m_e c^2) 2 + K/(m_e c^2) // // Where K is the electron non-relativistic kinetic energy // // n(T) > 0 for T < ~ 400 MeV // // NIM 155, pp. 145-156, 1978 // Formulae (2) and (5) const G4double alpha_1(1.64); const G4double beta_1(-0.0825); const G4double constK(1.7E-5); G4double numerator = (alpha_1 + beta_1 * std::log(k/eV)) * constK * std::pow(z, 2./3.); k /= electron_mass_c2; G4double denominator = k * (2 + k); G4double value = 0.; if (denominator > 0.) value = numerator / denominator; return value; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4DNAScreenedRutherfordElasticModel::SampleSecondaries(std::vector* /*fvect*/, const G4MaterialCutsCouple* /*couple*/, const G4DynamicParticle* aDynamicElectron, G4double, G4double) { if (verboseLevel > 3) G4cout << "Calling SampleSecondaries() of G4DNAScreenedRutherfordElasticModel" << G4endl; G4double electronEnergy0 = aDynamicElectron->GetKineticEnergy(); if (electronEnergy0 < killBelowEnergy) { fParticleChangeForGamma->ProposeTrackStatus(fStopAndKill); fParticleChangeForGamma->ProposeLocalEnergyDeposit(electronEnergy0); return ; } G4double cosTheta = 0.; if (electronEnergy0>= killBelowEnergy && electronEnergy0 < highEnergyLimit) { if (electronEnergy0 3) G4cout << "---> Using Brenner & Zaider model" << G4endl; cosTheta = BrennerZaiderRandomizeCosTheta(electronEnergy0); } if (electronEnergy0>=intermediateEnergyLimit) { if (verboseLevel > 3) G4cout << "---> Using Screened Rutherford model" << G4endl; G4double z = 10.; cosTheta = ScreenedRutherfordRandomizeCosTheta(electronEnergy0,z); } G4double phi = 2. * pi * G4UniformRand(); G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection(); G4ThreeVector xVers = zVers.orthogonal(); G4ThreeVector yVers = zVers.cross(xVers); G4double xDir = std::sqrt(1. - cosTheta*cosTheta); G4double yDir = xDir; xDir *= std::cos(phi); yDir *= std::sin(phi); G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers)); fParticleChangeForGamma->ProposeMomentumDirection(zPrimeVers.unit()) ; fParticleChangeForGamma->SetProposedKineticEnergy(electronEnergy0); } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4DNAScreenedRutherfordElasticModel::BrennerZaiderRandomizeCosTheta(G4double k) { // d sigma_el 1 beta(K) // ------------ (K) ~ --------------------------------- + --------------------------------- // d Omega (1 + 2 gamma(K) - cos(theta))^2 (1 + 2 delta(K) + cos(theta))^2 // // Maximum is < 1/(4 gamma(K)^2) + beta(K)/((2+2delta(K))^2) // // Phys. Med. Biol. 29 N.4 (1983) 443-447 // gamma(K), beta(K) and delta(K) are polynomials with coefficients for energy measured in eV k /= eV; G4double beta = std::exp(CalculatePolynomial(k,betaCoeff)); G4double delta = std::exp(CalculatePolynomial(k,deltaCoeff)); G4double gamma; if (k > 100.) { gamma = CalculatePolynomial(k, gamma100_200Coeff); // Only in this case it is not the exponent of the polynomial } else { if (k>10) { gamma = std::exp(CalculatePolynomial(k, gamma10_100Coeff)); } else { gamma = std::exp(CalculatePolynomial(k, gamma035_10Coeff)); } } // ***** Original method G4double oneOverMax = 1. / (1./(4.*gamma*gamma) + beta/( (2.+2.*delta)*(2.+2.*delta) )); G4double cosTheta = 0.; G4double leftDenominator = 0.; G4double rightDenominator = 0.; G4double fCosTheta = 0.; do { cosTheta = 2. * G4UniformRand() - 1.; leftDenominator = (1. + 2.*gamma - cosTheta); rightDenominator = (1. + 2.*delta + cosTheta); if ( (leftDenominator * rightDenominator) != 0. ) { fCosTheta = oneOverMax * (1./(leftDenominator*leftDenominator) + beta/(rightDenominator*rightDenominator)); } } while (fCosTheta < G4UniformRand()); return cosTheta; // ***** Alternative method using cumulative probability /* G4double cosTheta = -1; G4double cumul = 0; G4double value = 0; G4double leftDenominator = 0.; G4double rightDenominator = 0.; // Number of integration steps in the -1,1 range G4int iMax=200; G4double random = G4UniformRand(); // Cumulate differential cross section for (G4int i=0; i& vec) { // Sum_{i=0}^{size-1} vector_i k^i // // Phys. Med. Biol. 29 N.4 (1983) 443-447 G4double result = 0.; size_t size = vec.size(); while (size>0) { size--; result *= k; result += vec[size]; } return result; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4DNAScreenedRutherfordElasticModel::ScreenedRutherfordRandomizeCosTheta(G4double k, G4double z) { // d sigma_el sigma_Ruth(K) // ------------ (K) ~ ----------------------------- // d Omega (1 + 2 n(K) - cos(theta))^2 // // We extract cos(theta) distributed as (1 + 2 n(K) - cos(theta))^-2 // // Maximum is for theta=0: 1/(4 n(K)^2) (When n(K) is positive, that is always satisfied within the validity of the process) // // Phys. Med. Biol. 45 (2000) 3171-3194 // ***** Original method G4double n = ScreeningFactor(k, z); G4double oneOverMax = (4.*n*n); G4double cosTheta = 0.; G4double fCosTheta; do { cosTheta = 2. * G4UniformRand() - 1.; //G4cout << "SR cos=" << cosTheta << G4endl; fCosTheta = (1 + 2.*n - cosTheta); if (fCosTheta !=0.) fCosTheta = oneOverMax / (fCosTheta*fCosTheta); } while (fCosTheta < G4UniformRand()); return cosTheta; // ***** Alternative method using cumulative probability /* G4double cosTheta = -1; G4double cumul = 0; G4double value = 0; G4double n = ScreeningFactor(k, z); G4double fCosTheta; // Number of integration steps in the -1,1 range G4int iMax=200; G4double random = G4UniformRand(); // Cumulate differential cross section for (G4int i=0; i