source: trunk/source/processes/electromagnetic/lowenergy/src/G4FinalStateIonisationBorn.cc@ 830

Last change on this file since 830 was 819, checked in by garnier, 17 years ago

import all except CVS

  • Property svn:executable set to *
File size: 16.4 KB
RevLine 
[819]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4FinalStateIonisationBorn.cc,v 1.9 2007/11/26 17:27:09 pia Exp $
28// GEANT4 tag $Name: $
29//
30// Contact Author: Sebastien Incerti (incerti@cenbg.in2p3.fr)
31// Maria Grazia Pia (Maria.Grazia.Pia@cern.ch)
32//
33// Reference: TNS Geant4-DNA paper
34// Reference for implementation model: NIM. 155, pp. 145-156, 1978
35
36// History:
37// -----------
38// Date Name Modification
39// 28 Apr 2007 M.G. Pia Created in compliance with design described in TNS paper
40// Nov 2007 S. Incerti Implementation
41// 26 Nov 2007 MGP Cleaned up std::
42//
43// -------------------------------------------------------------------
44
45// Class description:
46// Reference: TNS Geant4-DNA paper
47// S. Chauvie et al., Geant4 physics processes for microdosimetry simulation:
48// design foundation and implementation of the first set of models,
49// IEEE Trans. Nucl. Sci., vol. 54, no. 6, Dec. 2007.
50// Further documentation available from http://www.ge.infn.it/geant4/dna
51
52// -------------------------------------------------------------------
53
54
55#include "G4FinalStateIonisationBorn.hh"
56#include "G4Track.hh"
57#include "G4Step.hh"
58#include "G4DynamicParticle.hh"
59#include "Randomize.hh"
60
61#include "G4ParticleTypes.hh"
62#include "G4ParticleDefinition.hh"
63#include "G4Electron.hh"
64#include "G4Proton.hh"
65#include "G4SystemOfUnits.hh"
66#include "G4ParticleMomentum.hh"
67
68
69G4FinalStateIonisationBorn::G4FinalStateIonisationBorn()
70{
71
72 name = "IonisationBorn";
73
74 // NEW
75 // Factor to scale microscopic/macroscopic cross section data in water
76
77 G4double scaleFactor = (1.e-22 / 3.343) * m*m;
78
79 // Energy limits
80 G4ParticleDefinition* electronDef = G4Electron::ElectronDefinition();
81 G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
82
83 G4String electron;
84 G4String proton;
85
86 // Default energy limits (defined for protection against anomalous behaviour only)
87 lowEnergyLimitDefault = 25 * eV;
88 highEnergyLimitDefault = 10 * MeV;
89
90 char *path = getenv("G4LEDATA");
91
92 if (!path)
93 G4Exception("G4DNACrossSectionDataSet::FullFileName - G4LEDATA environment variable not set");
94
95 // Data members for electrons
96
97 if (electronDef != 0)
98 {
99 electron = electronDef->GetParticleName();
100 lowEnergyLimit[electron] = 25. * eV;
101 highEnergyLimit[electron] = 30. * keV;
102
103 std::ostringstream eFullFileName;
104 eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat";
105 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
106 // eDiffCrossSection(eFullFileName.str().c_str());
107 if (!eDiffCrossSection)
108 {
109 // G4cout << "ERROR OPENING DATA FILE IN ELECTRON BORN IONIZATION !!! " << G4endl;
110 G4Exception("G4FinalStateIonisationBorn::ERROR OPENING electron DATA FILE");
111 while(1); // ---- MGP ---- What is this?
112 }
113
114 eTdummyVec.push_back(0.);
115 while(!eDiffCrossSection.eof())
116 {
117 double tDummy;
118 double eDummy;
119 eDiffCrossSection>>tDummy>>eDummy;
120 if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy);
121 for (int j=0; j<5; j++)
122 {
123 eDiffCrossSection>>eDiffCrossSectionData[j][tDummy][eDummy];
124 eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
125 eVecm[tDummy].push_back(eDummy);
126 }
127 }
128
129 }
130 else
131 {
132 G4Exception("G4FinalStateIonisationBorn Constructor: electron is not defined");
133 }
134
135 // Data members for protons
136
137 if (protonDef != 0)
138 {
139 proton = protonDef->GetParticleName();
140 lowEnergyLimit[proton] = 500. * keV;
141 highEnergyLimit[proton] = 10. * MeV;
142
143 std::ostringstream pFullFileName;
144 pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat";
145 std::ifstream pDiffCrossSection(pFullFileName.str().c_str());
146 // pDiffCrossSection(pFullFileName.str().c_str());
147 if (!pDiffCrossSection)
148 {
149 // G4cout<<"ERROR OPENING DATA FILE IN PROTON BORN IONIZATION !!! "<<G4endl;
150 G4Exception("G4FinalStateIonisationBorn::ERROR OPENING proton DATA FILE");
151 while(1); // ---- MGP ---- What is this?
152 }
153
154 pTdummyVec.push_back(0.);
155 while(!pDiffCrossSection.eof())
156 {
157 double tDummy;
158 double eDummy;
159 pDiffCrossSection>>tDummy>>eDummy;
160 if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy);
161 for (int j=0; j<5; j++)
162 {
163 pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy];
164 pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
165 //G4cout << "j=" << j << " Tdum=" << tDummy << " Edum=" << eDummy << " pDiff=" << pDiffCrossSectionData[j][tDummy][eDummy] << G4endl;
166 pVecm[tDummy].push_back(eDummy);
167 }
168 }
169 }
170 else
171 {
172 G4Exception("G4FinalStateIonisationBorn Constructor: proton is not defined");
173 }
174}
175
176
177G4FinalStateIonisationBorn::~G4FinalStateIonisationBorn()
178{
179 eVecm.clear();
180 pVecm.clear();
181}
182
183
184const G4FinalStateProduct& G4FinalStateIonisationBorn::GenerateFinalState(const G4Track& track, const G4Step& /* step */)
185{
186 // Clear previous secondaries, energy deposit and particle kill status
187 product.Clear();
188
189 const G4DynamicParticle* particle = track.GetDynamicParticle();
190
191 G4double lowLim = lowEnergyLimitDefault;
192 G4double highLim = highEnergyLimitDefault;
193
194 G4double k = particle->GetKineticEnergy();
195
196 const G4String& particleName = particle->GetDefinition()->GetParticleName();
197
198 // Retrieve energy limits for the current particle type
199
200 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
201 pos1 = lowEnergyLimit.find(particleName);
202
203 // Lower limit
204 if (pos1 != lowEnergyLimit.end())
205 {
206 lowLim = pos1->second;
207 }
208
209 // Upper limit
210 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
211 pos2 = highEnergyLimit.find(particleName);
212
213 if (pos2 != highEnergyLimit.end())
214 {
215 highLim = pos2->second;
216 }
217
218 // Verify that the current track is within the energy limits of validity of the cross section model
219
220 if (k >= lowLim && k <= highLim)
221 {
222 // Kinetic energy of primary particle
223
224 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
225 G4double particleMass = particle->GetDefinition()->GetPDGMass();
226 G4double totalEnergy = k + particleMass;
227 G4double pSquare = k * (totalEnergy + particleMass);
228 G4double totalMomentum = std::sqrt(pSquare);
229
230 const G4String& particleName = particle->GetDefinition()->GetParticleName();
231
232 G4int ionizationShell = cross.RandomSelect(k,particleName);
233
234 G4double secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
235
236 G4double bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
237
238 G4double cosTheta = 0.;
239 G4double phi = 0.;
240 RandomizeEjectedElectronDirection(track.GetDefinition(), k,secondaryKinetic, cosTheta, phi);
241
242 G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
243 G4double dirX = sinTheta*std::cos(phi);
244 G4double dirY = sinTheta*std::sin(phi);
245 G4double dirZ = cosTheta;
246 G4ThreeVector deltaDirection(dirX,dirY,dirZ);
247 deltaDirection.rotateUz(primaryDirection);
248
249 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
250
251 //Primary Particle Direction
252 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
253 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
254 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
255 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
256 finalPx /= finalMomentum;
257 finalPy /= finalMomentum;
258 finalPz /= finalMomentum;
259
260 product.ModifyPrimaryParticle(finalPx,finalPy,finalPz,k-bindingEnergy-secondaryKinetic);
261 product.AddEnergyDeposit(bindingEnergy);
262
263 G4DynamicParticle* aElectron = new G4DynamicParticle(G4Electron::Electron(),deltaDirection,secondaryKinetic);
264 product.AddSecondary(aElectron);
265 }
266
267 return product;
268}
269
270
271G4double G4FinalStateIonisationBorn::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
272 G4double k,
273 G4int shell)
274{
275
276 if (particleDefinition == G4Electron::ElectronDefinition())
277 {
278
279 G4double maximumEnergyTransfer=0.;
280 if ((k+waterStructure.IonisationEnergy(shell))/2. > k) maximumEnergyTransfer=k;
281 else maximumEnergyTransfer = (k+waterStructure.IonisationEnergy(shell))/2.;
282
283 G4double crossSectionMaximum = 0.;
284 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
285 {
286 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
287 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
288 }
289
290 G4double secondaryElectronKineticEnergy=0.;
291 do
292 {
293 secondaryElectronKineticEnergy = G4UniformRand() * (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
294 } while(G4UniformRand()*crossSectionMaximum >
295 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
296
297 return secondaryElectronKineticEnergy;
298
299 }
300
301 if (particleDefinition == G4Proton::ProtonDefinition())
302 {
303 G4double maximumKineticEnergyTransfer = 4.* (electron_mass_c2 / proton_mass_c2) * k - (waterStructure.IonisationEnergy(shell));
304
305 G4double crossSectionMaximum = 0.;
306 for (G4double value = waterStructure.IonisationEnergy(shell);
307 value<=4.*waterStructure.IonisationEnergy(shell) ;
308 value+=0.1*eV)
309 {
310 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
311 if (differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
312 }
313
314 G4double secondaryElectronKineticEnergy = 0.;
315 do
316 {
317 secondaryElectronKineticEnergy = G4UniformRand() * maximumKineticEnergyTransfer;
318 } while(G4UniformRand()*crossSectionMaximum >=
319 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
320
321 return secondaryElectronKineticEnergy;
322 }
323
324 return 0;
325}
326
327
328void G4FinalStateIonisationBorn::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
329 G4double k,
330 G4double secKinetic,
331 G4double & cosTheta,
332 G4double & phi )
333{
334 if (particleDefinition == G4Electron::ElectronDefinition())
335 {
336
337 phi = twopi * G4UniformRand();
338 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
339 else if (secKinetic <= 200.*eV)
340 {
341 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
342 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
343 }
344 else
345 {
346 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
347 cosTheta = std::sqrt(1.-sin2O);
348 }
349 }
350
351 if (particleDefinition == G4Proton::ProtonDefinition())
352 {
353 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
354 phi = twopi * G4UniformRand();
355 cosTheta = std::sqrt(secKinetic / maxSecKinetic);
356 }
357}
358
359
360double G4FinalStateIonisationBorn::DifferentialCrossSection(G4ParticleDefinition * particleDefinition,
361 G4double k,
362 G4double energyTransfer,
363 G4int ionizationLevelIndex)
364{
365 G4double sigma = 0.;
366
367 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex))
368 {
369 G4double valueT1 = 0;
370 G4double valueT2 = 0;
371 G4double valueE21 = 0;
372 G4double valueE22 = 0;
373 G4double valueE12 = 0;
374 G4double valueE11 = 0;
375
376 G4double xs11 = 0;
377 G4double xs12 = 0;
378 G4double xs21 = 0;
379 G4double xs22 = 0;
380
381
382 if (particleDefinition == G4Electron::ElectronDefinition())
383 {
384 // k should be in eV and energy transfer eV also
385 std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
386 std::vector<double>::iterator t1 = t2-1;
387 std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), energyTransfer);
388 std::vector<double>::iterator e11 = e12-1;
389
390 std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), energyTransfer);
391 std::vector<double>::iterator e21 = e22-1;
392
393 valueT1 =*t1;
394 valueT2 =*t2;
395 valueE21 =*e21;
396 valueE22 =*e22;
397 valueE12 =*e12;
398 valueE11 =*e11;
399
400 xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
401 xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
402 xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
403 xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
404
405 }
406
407 if (particleDefinition == G4Proton::ProtonDefinition())
408 {
409 // k should be in eV and energy transfer eV also
410 std::vector<double>::iterator t2 = std::upper_bound(pTdummyVec.begin(),pTdummyVec.end(), k);
411 std::vector<double>::iterator t1 = t2-1;
412 std::vector<double>::iterator e12 = std::upper_bound(pVecm[(*t1)].begin(),pVecm[(*t1)].end(), energyTransfer);
413 std::vector<double>::iterator e11 = e12-1;
414
415 std::vector<double>::iterator e22 = std::upper_bound(pVecm[(*t2)].begin(),pVecm[(*t2)].end(), energyTransfer);
416 std::vector<double>::iterator e21 = e22-1;
417
418 valueT1 =*t1;
419 valueT2 =*t2;
420 valueE21 =*e21;
421 valueE22 =*e22;
422 valueE12 =*e12;
423 valueE11 =*e11;
424
425 xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
426 xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
427 xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
428 xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
429 }
430
431 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
432 // if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
433 if (xsProduct != 0.)
434 {
435 sigma = QuadInterpolator(valueE11, valueE12,
436 valueE21, valueE22,
437 xs11, xs12,
438 xs21, xs22,
439 valueT1, valueT2,
440 k, energyTransfer);
441 }
442 }
443 return sigma;
444}
445
446
447G4double G4FinalStateIonisationBorn::LogLogInterpolate(G4double e1,
448 G4double e2,
449 G4double e,
450 G4double xs1,
451 G4double xs2)
452{
453 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
454 G4double b = std::log10(xs2) - a*std::log10(e2);
455 G4double sigma = a*std::log10(e) + b;
456 G4double value = (std::pow(10.,sigma));
457 return value;
458}
459
460
461G4double G4FinalStateIonisationBorn::QuadInterpolator(G4double e11, G4double e12,
462 G4double e21, G4double e22,
463 G4double xs11, G4double xs12,
464 G4double xs21, G4double xs22,
465 G4double t1, G4double t2,
466 G4double t, G4double e)
467{
468 G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
469 G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
470 G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
471 return value;
472}
473
474
Note: See TracBrowser for help on using the repository browser.