source: trunk/source/processes/electromagnetic/lowenergy/src/G4FinalStateIonisationBorn.cc @ 961

Last change on this file since 961 was 961, checked in by garnier, 15 years ago

update processes

  • Property svn:executable set to *
File size: 15.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4FinalStateIonisationBorn.cc,v 1.16 2008/12/06 13:47:12 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28
29#include "G4FinalStateIonisationBorn.hh"
30
31//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
32
33G4FinalStateIonisationBorn::G4FinalStateIonisationBorn()
34{
35  G4double scaleFactor = (1.e-22 / 3.343) * m*m;
36
37  G4ParticleDefinition* electronDef = G4Electron::ElectronDefinition();
38  G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
39
40  G4String electron;
41  G4String proton;
42
43  lowEnergyLimitDefault = 12.61 * eV; // SI: i/o 25 eV
44  highEnergyLimitDefault = 10 * MeV;
45
46  char *path = getenv("G4LEDATA");
47 
48  if (!path)
49    G4Exception("G4DNACrossSectionDataSet::FullFileName - G4LEDATA environment variable not set");
50
51  if (electronDef != 0)
52  {
53    electron = electronDef->GetParticleName();
54    lowEnergyLimit[electron] = 12.61 * eV; // SI: i/o 25 eV
55    highEnergyLimit[electron] = 30. * keV;
56
57    std::ostringstream eFullFileName;
58    eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat";
59    std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
60    if (!eDiffCrossSection)
61    { 
62      G4Exception("G4FinalStateIonisationBorn::ERROR OPENING electron DATA FILE");
63    }
64     
65    eTdummyVec.push_back(0.);
66    while(!eDiffCrossSection.eof())
67    {
68      double tDummy;
69      double eDummy;
70      eDiffCrossSection>>tDummy>>eDummy;
71      if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy);
72      for (int j=0; j<5; j++)
73      {
74        eDiffCrossSection>>eDiffCrossSectionData[j][tDummy][eDummy];
75
76        // SI - only if eof is not reached !
77        if (!eDiffCrossSection.eof()) eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
78
79        eVecm[tDummy].push_back(eDummy);
80
81      }
82    }
83
84  }
85  else
86  {
87    G4Exception("G4FinalStateIonisationBorn Constructor: electron is not defined");
88  }
89
90  if (protonDef != 0)
91  {
92    proton = protonDef->GetParticleName();
93    lowEnergyLimit[proton] = 500. * keV;
94    highEnergyLimit[proton] = 10. * MeV;
95
96    std::ostringstream pFullFileName;
97    pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat";
98    std::ifstream pDiffCrossSection(pFullFileName.str().c_str());
99    if (!pDiffCrossSection)
100    { 
101      G4Exception("G4FinalStateIonisationBorn::ERROR OPENING proton DATA FILE");
102    }
103     
104    pTdummyVec.push_back(0.);
105    while(!pDiffCrossSection.eof())
106    {
107      double tDummy;
108      double eDummy;
109      pDiffCrossSection>>tDummy>>eDummy;
110      if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy);
111      for (int j=0; j<5; j++)
112      {
113        pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy];
114
115        // SI - only if eof is not reached !
116        if (!pDiffCrossSection.eof()) pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
117
118        pVecm[tDummy].push_back(eDummy);
119      }
120    }
121  }
122  else
123  {
124    G4Exception("G4FinalStateIonisationBorn Constructor: proton is not defined");
125  }
126}
127
128//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
129
130G4FinalStateIonisationBorn::~G4FinalStateIonisationBorn()
131{
132  eVecm.clear();
133  pVecm.clear();
134}
135
136//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
137
138const G4FinalStateProduct& G4FinalStateIonisationBorn::GenerateFinalState(const G4Track& track, const G4Step& /* step */)
139{
140  product.Clear();
141
142  const G4DynamicParticle* particle = track.GetDynamicParticle();
143
144  G4double lowLim = lowEnergyLimitDefault;
145  G4double highLim = highEnergyLimitDefault;
146
147  G4double k = particle->GetKineticEnergy();
148
149  const G4String& particleName = particle->GetDefinition()->GetParticleName();
150
151  std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
152  pos1 = lowEnergyLimit.find(particleName);
153
154  if (pos1 != lowEnergyLimit.end())
155  {
156    lowLim = pos1->second;
157  }
158
159  std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
160  pos2 = highEnergyLimit.find(particleName);
161
162  if (pos2 != highEnergyLimit.end())
163  {
164    highLim = pos2->second;
165  }
166
167  if (k >= lowLim && k <= highLim)
168  {
169    G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
170    G4double particleMass = particle->GetDefinition()->GetPDGMass();
171    G4double totalEnergy = k + particleMass;
172    G4double pSquare = k * (totalEnergy + particleMass);
173    G4double totalMomentum = std::sqrt(pSquare);
174
175    const G4String& particleName = particle->GetDefinition()->GetParticleName();
176 
177    G4int ionizationShell = cross.RandomSelect(k,particleName);
178 
179    G4double secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
180 
181    G4double bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
182
183    G4double cosTheta = 0.;
184    G4double phi = 0.; 
185    RandomizeEjectedElectronDirection(track.GetDefinition(), k,secondaryKinetic, cosTheta, phi);
186
187    G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
188    G4double dirX = sinTheta*std::cos(phi);
189    G4double dirY = sinTheta*std::sin(phi);
190    G4double dirZ = cosTheta;
191    G4ThreeVector deltaDirection(dirX,dirY,dirZ);
192    deltaDirection.rotateUz(primaryDirection);
193
194    G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
195
196    G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
197    G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
198    G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
199    G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
200    finalPx /= finalMomentum;
201    finalPy /= finalMomentum;
202    finalPz /= finalMomentum;
203
204    product.ModifyPrimaryParticle(finalPx,finalPy,finalPz,k-bindingEnergy-secondaryKinetic);
205    product.AddEnergyDeposit(bindingEnergy);
206
207    G4DynamicParticle* aElectron = new G4DynamicParticle(G4Electron::Electron(),deltaDirection,secondaryKinetic);
208    product.AddSecondary(aElectron);
209  }
210
211  return product;
212}
213
214//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
215
216G4double G4FinalStateIonisationBorn::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition, 
217G4double k, G4int shell)
218{
219  if (particleDefinition == G4Electron::ElectronDefinition()) 
220  {
221    G4double maximumEnergyTransfer=0.;
222    if ((k+waterStructure.IonisationEnergy(shell))/2. > k) maximumEnergyTransfer=k;
223    else maximumEnergyTransfer = (k+waterStructure.IonisationEnergy(shell))/2.;
224   
225    G4double crossSectionMaximum = 0.;
226    for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
227    {
228      G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
229      if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
230    }
231 
232    G4double secondaryElectronKineticEnergy=0.;
233    do 
234    {
235      secondaryElectronKineticEnergy = G4UniformRand() * (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
236    } while(G4UniformRand()*crossSectionMaximum >
237      DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
238
239    return secondaryElectronKineticEnergy;
240 
241  }
242 
243  if (particleDefinition == G4Proton::ProtonDefinition()) 
244  {
245    G4double maximumKineticEnergyTransfer = 4.* (electron_mass_c2 / proton_mass_c2) * k - (waterStructure.IonisationEnergy(shell));
246
247    G4double crossSectionMaximum = 0.;
248    for (G4double value = waterStructure.IonisationEnergy(shell); 
249         value<=4.*waterStructure.IonisationEnergy(shell) ; 
250         value+=0.1*eV)
251    {
252      G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
253      if (differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
254    }
255
256    G4double secondaryElectronKineticEnergy = 0.;
257    do
258    {
259      secondaryElectronKineticEnergy = G4UniformRand() * maximumKineticEnergyTransfer;
260    } while(G4UniformRand()*crossSectionMaximum >= 
261              DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
262
263    return secondaryElectronKineticEnergy;
264  }
265
266  return 0;
267}
268
269//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
270
271void G4FinalStateIonisationBorn::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition, 
272                                                                   G4double k, 
273                                                                   G4double secKinetic, 
274                                                                   G4double & cosTheta, 
275                                                                   G4double & phi )
276{
277  if (particleDefinition == G4Electron::ElectronDefinition()) 
278  {
279    phi = twopi * G4UniformRand();
280    if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
281    else if (secKinetic <= 200.*eV)     
282    {
283      if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
284      else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
285    }
286    else       
287    {
288      G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
289      cosTheta = std::sqrt(1.-sin2O);
290    }
291  }
292 
293  if (particleDefinition == G4Proton::ProtonDefinition()) 
294  {
295    G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
296    phi = twopi * G4UniformRand();
297    cosTheta = std::sqrt(secKinetic / maxSecKinetic);
298  }                     
299}
300
301//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
302
303double G4FinalStateIonisationBorn::DifferentialCrossSection(G4ParticleDefinition * particleDefinition, 
304                                                            G4double k, 
305                                                            G4double energyTransfer, 
306                                                            G4int ionizationLevelIndex)
307{
308  G4double sigma = 0.;
309
310  if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex))
311  {
312    G4double valueT1 = 0;
313    G4double valueT2 = 0;
314    G4double valueE21 = 0;
315    G4double valueE22 = 0;
316    G4double valueE12 = 0;
317    G4double valueE11 = 0;
318
319    G4double xs11 = 0;   
320    G4double xs12 = 0; 
321    G4double xs21 = 0; 
322    G4double xs22 = 0; 
323
324    if (particleDefinition == G4Electron::ElectronDefinition()) 
325    {
326      // k should be in eV and energy transfer eV also
327
328      std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
329
330      std::vector<double>::iterator t1 = t2-1;
331
332      // SI : the following condition avoids situations where energyTransfer >last vector element
333      if (energyTransfer <= eVecm[(*t1)].back())
334      {
335        std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), energyTransfer);
336        std::vector<double>::iterator e11 = e12-1;
337
338        std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), energyTransfer);
339        std::vector<double>::iterator e21 = e22-1;
340
341        valueT1  =*t1;
342        valueT2  =*t2;
343        valueE21 =*e21;
344        valueE22 =*e22;
345        valueE12 =*e12;
346        valueE11 =*e11;
347
348        xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
349        xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
350        xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
351        xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
352      }
353
354    }
355 
356   if (particleDefinition == G4Proton::ProtonDefinition()) 
357   {
358      // k should be in eV and energy transfer eV also
359      std::vector<double>::iterator t2 = std::upper_bound(pTdummyVec.begin(),pTdummyVec.end(), k);
360      std::vector<double>::iterator t1 = t2-1;
361     
362        std::vector<double>::iterator e12 = std::upper_bound(pVecm[(*t1)].begin(),pVecm[(*t1)].end(), energyTransfer);
363        std::vector<double>::iterator e11 = e12-1;
364
365        std::vector<double>::iterator e22 = std::upper_bound(pVecm[(*t2)].begin(),pVecm[(*t2)].end(), energyTransfer);
366        std::vector<double>::iterator e21 = e22-1;
367 
368        valueT1  =*t1;
369        valueT2  =*t2;
370        valueE21 =*e21;
371        valueE22 =*e22;
372        valueE12 =*e12;
373        valueE11 =*e11;
374
375        xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
376        xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
377        xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
378        xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
379
380   }
381 
382   G4double xsProduct = xs11 * xs12 * xs21 * xs22;
383   if (xsProduct != 0.)
384   {
385     sigma = QuadInterpolator(     valueE11, valueE12, 
386                                   valueE21, valueE22, 
387                                   xs11, xs12, 
388                                   xs21, xs22, 
389                                   valueT1, valueT2, 
390                                   k, energyTransfer);
391   }
392 
393 }
394 
395  return sigma;
396}
397
398//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
399
400G4double G4FinalStateIonisationBorn::LogLogInterpolate(G4double e1, 
401                                                       G4double e2, 
402                                                       G4double e, 
403                                                       G4double xs1, 
404                                                       G4double xs2)
405{
406  G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
407  G4double b = std::log10(xs2) - a*std::log10(e2);
408  G4double sigma = a*std::log10(e) + b;
409  G4double value = (std::pow(10.,sigma));
410  return value;
411}
412
413//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
414
415G4double G4FinalStateIonisationBorn::QuadInterpolator(G4double e11, G4double e12, 
416                                                      G4double e21, G4double e22, 
417                                                      G4double xs11, G4double xs12, 
418                                                      G4double xs21, G4double xs22, 
419                                                      G4double t1, G4double t2, 
420                                                      G4double t, G4double e)
421{
422  G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
423  G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
424  G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
425  return value;
426}
427
428
Note: See TracBrowser for help on using the repository browser.