| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4FinalStateIonisationRudd.cc,v 1.5 2007/11/26 17:27:09 pia Exp $
|
|---|
| 28 | // GEANT4 tag $Name: $
|
|---|
| 29 | //
|
|---|
| 30 | // Contact Author: Sebastien Incerti (incerti@cenbg.in2p3.fr)
|
|---|
| 31 | // Maria Grazia Pia (Maria.Grazia.Pia@cern.ch)
|
|---|
| 32 | //
|
|---|
| 33 | ///
|
|---|
| 34 | // Reference: TNS Geant4-DNA paper
|
|---|
| 35 | // Reference for implementation model: NIM. 155, pp. 145-156, 1978
|
|---|
| 36 | //
|
|---|
| 37 | // History:
|
|---|
| 38 | // -----------
|
|---|
| 39 | // Date Name Modification
|
|---|
| 40 | // 28 Apr 2007 M.G. Pia Created in compliance with design described in TNS paper
|
|---|
| 41 | // Nov 2007 S. Incerti Implementation
|
|---|
| 42 | // 26 Nov 2007 MGP Cleaned up std::
|
|---|
| 43 | //
|
|---|
| 44 | // -------------------------------------------------------------------
|
|---|
| 45 |
|
|---|
| 46 | // Class description:
|
|---|
| 47 | // Reference: TNS Geant4-DNA paper
|
|---|
| 48 | // S. Chauvie et al., Geant4 physics processes for microdosimetry simulation:
|
|---|
| 49 | // design foundation and implementation of the first set of models,
|
|---|
| 50 | // IEEE Trans. Nucl. Sci., vol. 54, no. 6, Dec. 2007.
|
|---|
| 51 | // Further documentation available from http://www.ge.infn.it/geant4/dna
|
|---|
| 52 |
|
|---|
| 53 | // -------------------------------------------------------------------
|
|---|
| 54 |
|
|---|
| 55 |
|
|---|
| 56 | #include "G4FinalStateIonisationRudd.hh"
|
|---|
| 57 | #include "G4Track.hh"
|
|---|
| 58 | #include "G4Step.hh"
|
|---|
| 59 | #include "G4DynamicParticle.hh"
|
|---|
| 60 | #include "Randomize.hh"
|
|---|
| 61 |
|
|---|
| 62 | #include "G4ParticleTypes.hh"
|
|---|
| 63 | #include "G4ParticleDefinition.hh"
|
|---|
| 64 | #include "G4Electron.hh"
|
|---|
| 65 | #include "G4Proton.hh"
|
|---|
| 66 | #include "G4SystemOfUnits.hh"
|
|---|
| 67 | #include "G4ParticleMomentum.hh"
|
|---|
| 68 | #include "G4DNAGenericIonsManager.hh"
|
|---|
| 69 |
|
|---|
| 70 |
|
|---|
| 71 | G4FinalStateIonisationRudd::G4FinalStateIonisationRudd()
|
|---|
| 72 | {
|
|---|
| 73 | name = "IonisationBorn";
|
|---|
| 74 | // Default energy limits (defined for protection against anomalous behaviour only)
|
|---|
| 75 | lowEnergyLimitDefault = 100 * eV;
|
|---|
| 76 | highEnergyLimitDefault = 100 * MeV;
|
|---|
| 77 |
|
|---|
| 78 | G4DNAGenericIonsManager *instance;
|
|---|
| 79 | instance = G4DNAGenericIonsManager::Instance();
|
|---|
| 80 |
|
|---|
| 81 | G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition();
|
|---|
| 82 | G4ParticleDefinition* hydrogenDef = instance->GetIon("hydrogen");
|
|---|
| 83 | G4ParticleDefinition* alphaPlusPlusDef = instance->GetIon("alpha++");
|
|---|
| 84 | G4ParticleDefinition* alphaPlusDef = instance->GetIon("alpha+");
|
|---|
| 85 | G4ParticleDefinition* heliumDef = instance->GetIon("helium");
|
|---|
| 86 |
|
|---|
| 87 | G4String proton;
|
|---|
| 88 | G4String hydrogen;
|
|---|
| 89 | G4String alphaPlusPlus;
|
|---|
| 90 | G4String alphaPlus;
|
|---|
| 91 | G4String helium;
|
|---|
| 92 |
|
|---|
| 93 | proton = protonDef->GetParticleName();
|
|---|
| 94 | lowEnergyLimit[proton] = 100. * eV;
|
|---|
| 95 | highEnergyLimit[proton] = 500. * keV;
|
|---|
| 96 |
|
|---|
| 97 | hydrogen = hydrogenDef->GetParticleName();
|
|---|
| 98 | lowEnergyLimit[hydrogen] = 100. * eV;
|
|---|
| 99 | highEnergyLimit[hydrogen] = 100. * MeV;
|
|---|
| 100 |
|
|---|
| 101 | alphaPlusPlus = alphaPlusPlusDef->GetParticleName();
|
|---|
| 102 | lowEnergyLimit[alphaPlusPlus] = 1. * keV;
|
|---|
| 103 | highEnergyLimit[alphaPlusPlus] = 10. * MeV;
|
|---|
| 104 |
|
|---|
| 105 | alphaPlus = alphaPlusDef->GetParticleName();
|
|---|
| 106 | lowEnergyLimit[alphaPlus] = 1. * keV;
|
|---|
| 107 | highEnergyLimit[alphaPlus] = 10. * MeV;
|
|---|
| 108 |
|
|---|
| 109 | helium = heliumDef->GetParticleName();
|
|---|
| 110 | lowEnergyLimit[helium] = 1. * keV;
|
|---|
| 111 | highEnergyLimit[helium] = 10. * MeV;
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 |
|
|---|
| 115 | G4FinalStateIonisationRudd::~G4FinalStateIonisationRudd()
|
|---|
| 116 | { }
|
|---|
| 117 |
|
|---|
| 118 |
|
|---|
| 119 |
|
|---|
| 120 | const G4FinalStateProduct& G4FinalStateIonisationRudd::GenerateFinalState(const G4Track& track, const G4Step& /* step */)
|
|---|
| 121 | {
|
|---|
| 122 | // Clear previous secondaries, energy deposit and particle kill status
|
|---|
| 123 | product.Clear();
|
|---|
| 124 |
|
|---|
| 125 | const G4DynamicParticle* particle = track.GetDynamicParticle();
|
|---|
| 126 |
|
|---|
| 127 | G4double lowLim = lowEnergyLimitDefault;
|
|---|
| 128 | G4double highLim = highEnergyLimitDefault;
|
|---|
| 129 |
|
|---|
| 130 | G4double k = particle->GetKineticEnergy();
|
|---|
| 131 |
|
|---|
| 132 | const G4String& particleName = particle->GetDefinition()->GetParticleName();
|
|---|
| 133 |
|
|---|
| 134 | // Retrieve energy limits for the current particle type
|
|---|
| 135 |
|
|---|
| 136 | std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
|
|---|
| 137 | pos1 = lowEnergyLimit.find(particleName);
|
|---|
| 138 |
|
|---|
| 139 | // Lower limit
|
|---|
| 140 | if (pos1 != lowEnergyLimit.end())
|
|---|
| 141 | {
|
|---|
| 142 | lowLim = pos1->second;
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | // Upper limit
|
|---|
| 146 | std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
|
|---|
| 147 | pos2 = highEnergyLimit.find(particleName);
|
|---|
| 148 |
|
|---|
| 149 | if (pos2 != highEnergyLimit.end())
|
|---|
| 150 | {
|
|---|
| 151 | highLim = pos2->second;
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 | // Verify that the current track is within the energy limits of validity of the cross section model
|
|---|
| 155 |
|
|---|
| 156 | if (k >= lowLim && k <= highLim)
|
|---|
| 157 | {
|
|---|
| 158 | // Kinetic energy of primary particle
|
|---|
| 159 |
|
|---|
| 160 | G4ParticleDefinition* definition = particle->GetDefinition();
|
|---|
| 161 | G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
|
|---|
| 162 | G4double particleMass = definition->GetPDGMass();
|
|---|
| 163 | G4double totalEnergy = k + particleMass;
|
|---|
| 164 | G4double pSquare = k*(totalEnergy+particleMass);
|
|---|
| 165 | G4double totalMomentum = std::sqrt(pSquare);
|
|---|
| 166 |
|
|---|
| 167 | const G4String& particleName = definition->GetParticleName();
|
|---|
| 168 |
|
|---|
| 169 | G4int ionizationShell = cross.RandomSelect(k,particleName);
|
|---|
| 170 |
|
|---|
| 171 | G4double secondaryKinetic = RandomizeEjectedElectronEnergy(definition,k,ionizationShell);
|
|---|
| 172 |
|
|---|
| 173 | G4double bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
|
|---|
| 174 |
|
|---|
| 175 | G4double cosTheta = 0.;
|
|---|
| 176 | G4double phi = 0.;
|
|---|
| 177 | RandomizeEjectedElectronDirection(definition, k,secondaryKinetic, cosTheta, phi);
|
|---|
| 178 |
|
|---|
| 179 | G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
|
|---|
| 180 | G4double dirX = sinTheta*std::cos(phi);
|
|---|
| 181 | G4double dirY = sinTheta*std::sin(phi);
|
|---|
| 182 | G4double dirZ = cosTheta;
|
|---|
| 183 | G4ThreeVector deltaDirection(dirX,dirY,dirZ);
|
|---|
| 184 | deltaDirection.rotateUz(primaryDirection);
|
|---|
| 185 |
|
|---|
| 186 | G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
|
|---|
| 187 |
|
|---|
| 188 | // Primary Particle Direction
|
|---|
| 189 | G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
|
|---|
| 190 | G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
|
|---|
| 191 | G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
|
|---|
| 192 | G4double finalMomentum = std::sqrt(finalPx*finalPx+finalPy*finalPy+finalPz*finalPz);
|
|---|
| 193 | finalPx /= finalMomentum;
|
|---|
| 194 | finalPy /= finalMomentum;
|
|---|
| 195 | finalPz /= finalMomentum;
|
|---|
| 196 |
|
|---|
| 197 | product.ModifyPrimaryParticle(finalPx,finalPy,finalPz,k-bindingEnergy-secondaryKinetic);
|
|---|
| 198 | product.AddEnergyDeposit(bindingEnergy);
|
|---|
| 199 |
|
|---|
| 200 | G4DynamicParticle* aElectron = new G4DynamicParticle(G4Electron::Electron(),deltaDirection,secondaryKinetic);
|
|---|
| 201 | product.AddSecondary(aElectron);
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 | if (k < lowLim) {product.KillPrimaryParticle();product.AddEnergyDeposit(k);}
|
|---|
| 205 |
|
|---|
| 206 | return product;
|
|---|
| 207 | }
|
|---|
| 208 |
|
|---|
| 209 |
|
|---|
| 210 |
|
|---|
| 211 | G4double G4FinalStateIonisationRudd::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
|
|---|
| 212 | G4double k,
|
|---|
| 213 | G4int shell)
|
|---|
| 214 | {
|
|---|
| 215 | G4double maximumKineticEnergyTransfer = 0.;
|
|---|
| 216 |
|
|---|
| 217 | G4DNAGenericIonsManager *instance;
|
|---|
| 218 | instance = G4DNAGenericIonsManager::Instance();
|
|---|
| 219 |
|
|---|
| 220 | if (particleDefinition == G4Proton::ProtonDefinition()
|
|---|
| 221 | || particleDefinition == instance->GetIon("hydrogen"))
|
|---|
| 222 |
|
|---|
| 223 | {
|
|---|
| 224 | maximumKineticEnergyTransfer= 4.* (electron_mass_c2 / proton_mass_c2) * k;
|
|---|
| 225 | }
|
|---|
| 226 |
|
|---|
| 227 | if (particleDefinition == instance->GetIon("helium")
|
|---|
| 228 | || particleDefinition == instance->GetIon("alpha+")
|
|---|
| 229 | || particleDefinition == instance->GetIon("alpha++"))
|
|---|
| 230 | {
|
|---|
| 231 | maximumKineticEnergyTransfer= 4.* (0.511 / 3728) * k;
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | G4double crossSectionMaximum = 0.;
|
|---|
| 235 | for(G4double value=waterStructure.IonisationEnergy(shell); value<=4.*waterStructure.IonisationEnergy(shell) ; value+=0.1*eV)
|
|---|
| 236 | {
|
|---|
| 237 | G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k, value, shell);
|
|---|
| 238 | if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
|
|---|
| 239 | }
|
|---|
| 240 | G4double secElecKinetic = 0.;
|
|---|
| 241 | do{
|
|---|
| 242 | secElecKinetic = G4UniformRand() * maximumKineticEnergyTransfer;
|
|---|
| 243 | } while(G4UniformRand()*crossSectionMaximum > DifferentialCrossSection(particleDefinition,
|
|---|
| 244 | k,
|
|---|
| 245 | secElecKinetic+waterStructure.IonisationEnergy(shell),
|
|---|
| 246 | shell));
|
|---|
| 247 |
|
|---|
| 248 | return(secElecKinetic);
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 |
|
|---|
| 252 | void G4FinalStateIonisationRudd::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
|
|---|
| 253 | G4double k,
|
|---|
| 254 | G4double secKinetic,
|
|---|
| 255 | G4double cosTheta,
|
|---|
| 256 | G4double phi )
|
|---|
| 257 | {
|
|---|
| 258 | G4DNAGenericIonsManager *instance;
|
|---|
| 259 | instance = G4DNAGenericIonsManager::Instance();
|
|---|
| 260 |
|
|---|
| 261 | G4double maxSecKinetic = 0.;
|
|---|
| 262 |
|
|---|
| 263 | if (particleDefinition == G4Proton::ProtonDefinition()
|
|---|
| 264 | || particleDefinition == instance->GetIon("hydrogen"))
|
|---|
| 265 | {
|
|---|
| 266 | maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 | if (particleDefinition == instance->GetIon("helium")
|
|---|
| 270 | || particleDefinition == instance->GetIon("alpha+")
|
|---|
| 271 | || particleDefinition == instance->GetIon("alpha++"))
|
|---|
| 272 | {
|
|---|
| 273 | maxSecKinetic = 4.* (0.511 / 3728) * k;
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | phi = twopi * G4UniformRand();
|
|---|
| 277 | cosTheta = std::sqrt(secKinetic / maxSecKinetic);
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | G4double G4FinalStateIonisationRudd::DifferentialCrossSection(G4ParticleDefinition* particleDefinition,
|
|---|
| 282 | G4double k,
|
|---|
| 283 | G4double energyTransfer,
|
|---|
| 284 | G4int ionizationLevelIndex)
|
|---|
| 285 | {
|
|---|
| 286 | // Shells ids are 0 1 2 3 4 (4 is k shell)
|
|---|
| 287 | // !!Attention, "energyTransfer" here is the energy transfered to the electron which means
|
|---|
| 288 | // that the secondary kinetic energy is w = energyTransfer - bindingEnergy
|
|---|
| 289 | //
|
|---|
| 290 | // ds S F1(nu) + w * F2(nu)
|
|---|
| 291 | // ---- = G(k) * ---- -------------------------------------------
|
|---|
| 292 | // dw Bj (1+w)^3 * [1 + exp{alpha * (w - wc) / nu}]
|
|---|
| 293 | //
|
|---|
| 294 | // w is the secondary electron kinetic Energy in eV
|
|---|
| 295 | //
|
|---|
| 296 | // All the other parameters can be found in Rudd's Papers
|
|---|
| 297 | //
|
|---|
| 298 | // M.Eugene Rudd, 1988, User-Friendly model for the energy distribution of
|
|---|
| 299 | // electrons from protons or electron collisions. Nucl. Tracks Rad. Meas.Vol 16 N0 2/3 pp 219-218
|
|---|
| 300 | //
|
|---|
| 301 |
|
|---|
| 302 | const G4int j=ionizationLevelIndex;
|
|---|
| 303 |
|
|---|
| 304 | G4double A1 ;
|
|---|
| 305 | G4double B1 ;
|
|---|
| 306 | G4double C1 ;
|
|---|
| 307 | G4double D1 ;
|
|---|
| 308 | G4double E1 ;
|
|---|
| 309 | G4double A2 ;
|
|---|
| 310 | G4double B2 ;
|
|---|
| 311 | G4double C2 ;
|
|---|
| 312 | G4double D2 ;
|
|---|
| 313 | G4double alphaConst ;
|
|---|
| 314 |
|
|---|
| 315 | if (j == 4)
|
|---|
| 316 | {
|
|---|
| 317 | //Data For Liquid Water K SHELL from Dingfelder (Protons in Water)
|
|---|
| 318 | A1 = 1.25;
|
|---|
| 319 | B1 = 0.5;
|
|---|
| 320 | C1 = 1.00;
|
|---|
| 321 | D1 = 1.00;
|
|---|
| 322 | E1 = 3.00;
|
|---|
| 323 | A2 = 1.10;
|
|---|
| 324 | B2 = 1.30;
|
|---|
| 325 | C2 = 1.00;
|
|---|
| 326 | D2 = 0.00;
|
|---|
| 327 | alphaConst = 0.66;
|
|---|
| 328 | }
|
|---|
| 329 | else
|
|---|
| 330 | {
|
|---|
| 331 | //Data For Liquid Water from Dingfelder (Protons in Water)
|
|---|
| 332 | A1 = 1.02;
|
|---|
| 333 | B1 = 82.0;
|
|---|
| 334 | C1 = 0.45;
|
|---|
| 335 | D1 = -0.80;
|
|---|
| 336 | E1 = 0.38;
|
|---|
| 337 | A2 = 1.07;
|
|---|
| 338 | B2 = 14.6;
|
|---|
| 339 | C2 = 0.60;
|
|---|
| 340 | D2 = 0.04;
|
|---|
| 341 | alphaConst = 0.64;
|
|---|
| 342 | }
|
|---|
| 343 |
|
|---|
| 344 | const G4double n = 2.;
|
|---|
| 345 | const G4double Gj[5] = {0.99, 1.11, 1.11, 0.52, 1.};
|
|---|
| 346 |
|
|---|
| 347 | //const G4double I[5]={12.61*eV, 14.73*eV, 18.55*eV, 32.2*eV, 539.7*eV}; // for water Vapor
|
|---|
| 348 | //const G4double energyConstant[]={10.79*eV, 13.39*eV, 16.05*eV, 32.30*eV, 539.*eV};
|
|---|
| 349 |
|
|---|
| 350 | G4DNAGenericIonsManager* instance;
|
|---|
| 351 | instance = G4DNAGenericIonsManager::Instance();
|
|---|
| 352 |
|
|---|
| 353 | G4double wBig = (energyTransfer - waterStructure.IonisationEnergy(ionizationLevelIndex));
|
|---|
| 354 | G4double w = wBig / waterStructure.IonisationEnergy(ionizationLevelIndex);
|
|---|
| 355 | G4double Ry = 13.6*eV;
|
|---|
| 356 |
|
|---|
| 357 | G4double tau = 0.;
|
|---|
| 358 |
|
|---|
| 359 | if (particleDefinition == G4Proton::ProtonDefinition()
|
|---|
| 360 | || particleDefinition == instance->GetIon("hydrogen"))
|
|---|
| 361 | {
|
|---|
| 362 | tau = (electron_mass_c2/proton_mass_c2) * k ;
|
|---|
| 363 | }
|
|---|
| 364 |
|
|---|
| 365 | if ( particleDefinition == instance->GetIon("helium")
|
|---|
| 366 | || particleDefinition == instance->GetIon("alpha+")
|
|---|
| 367 | || particleDefinition == instance->GetIon("alpha++"))
|
|---|
| 368 | {
|
|---|
| 369 | tau = (0.511/3728.) * k ;
|
|---|
| 370 | }
|
|---|
| 371 |
|
|---|
| 372 | G4double S = 4.*pi * Bohr_radius*Bohr_radius * n * std::pow((Ry/waterStructure.IonisationEnergy(ionizationLevelIndex)),2);
|
|---|
| 373 | G4double v2 = tau / waterStructure.IonisationEnergy(ionizationLevelIndex);
|
|---|
| 374 | G4double v = std::sqrt(v2);
|
|---|
| 375 | G4double wc = 4.*v2 - 2.*v - (Ry/(4.*waterStructure.IonisationEnergy(ionizationLevelIndex)));
|
|---|
| 376 |
|
|---|
| 377 | G4double L1 = (C1* std::pow(v,(D1))) / (1.+ E1*std::pow(v, (D1+4.)));
|
|---|
| 378 | G4double L2 = C2*std::pow(v,(D2));
|
|---|
| 379 | G4double H1 = (A1*std::log(1.+v2)) / (v2+(B1/v2));
|
|---|
| 380 | G4double H2 = (A2/v2) + (B2/(v2*v2));
|
|---|
| 381 |
|
|---|
| 382 | G4double F1 = L1+H1;
|
|---|
| 383 | G4double F2 = (L2*H2)/(L2+H2);
|
|---|
| 384 |
|
|---|
| 385 | G4double sigma = CorrectionFactor(particleDefinition, k/eV)
|
|---|
| 386 | * Gj[j] * (S/waterStructure.IonisationEnergy(ionizationLevelIndex))
|
|---|
| 387 | * ( (F1+w*F2) / ( std::pow((1.+w),3) * ( 1.+std::exp(alphaConst*(w-wc)/v))) );
|
|---|
| 388 |
|
|---|
| 389 | if ( particleDefinition == G4Proton::ProtonDefinition()
|
|---|
| 390 | || particleDefinition == instance->GetIon("hydrogen")
|
|---|
| 391 | )
|
|---|
| 392 | {
|
|---|
| 393 | return(sigma);
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | // ------------
|
|---|
| 397 |
|
|---|
| 398 | if (particleDefinition == instance->GetIon("alpha++") )
|
|---|
| 399 | {
|
|---|
| 400 | slaterEffectiveCharge[0]=0.;
|
|---|
| 401 | slaterEffectiveCharge[1]=0.;
|
|---|
| 402 | slaterEffectiveCharge[2]=0.;
|
|---|
| 403 | sCoefficient[0]=0.;
|
|---|
| 404 | sCoefficient[1]=0.;
|
|---|
| 405 | sCoefficient[2]=0.;
|
|---|
| 406 | }
|
|---|
| 407 |
|
|---|
| 408 | if (particleDefinition == instance->GetIon("alpha+") )
|
|---|
| 409 | {
|
|---|
| 410 | slaterEffectiveCharge[0]=2.0;
|
|---|
| 411 | slaterEffectiveCharge[1]=1.15;
|
|---|
| 412 | slaterEffectiveCharge[2]=1.15;
|
|---|
| 413 | sCoefficient[0]=0.7;
|
|---|
| 414 | sCoefficient[1]=0.15;
|
|---|
| 415 | sCoefficient[2]=0.15;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | if (particleDefinition == instance->GetIon("helium") )
|
|---|
| 419 | {
|
|---|
| 420 | slaterEffectiveCharge[0]=1.7;
|
|---|
| 421 | slaterEffectiveCharge[1]=1.15;
|
|---|
| 422 | slaterEffectiveCharge[2]=1.15;
|
|---|
| 423 | sCoefficient[0]=0.5;
|
|---|
| 424 | sCoefficient[1]=0.25;
|
|---|
| 425 | sCoefficient[2]=0.25;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | if ( particleDefinition == instance->GetIon("helium")
|
|---|
| 429 | || particleDefinition == instance->GetIon("alpha+")
|
|---|
| 430 | || particleDefinition == instance->GetIon("alpha++")
|
|---|
| 431 | )
|
|---|
| 432 | {
|
|---|
| 433 | sigma = Gj[j] * (S/waterStructure.IonisationEnergy(ionizationLevelIndex)) * ( (F1+w*F2) / ( std::pow((1.+w),3) * ( 1.+std::exp(alphaConst*(w-wc)/v))) );
|
|---|
| 434 |
|
|---|
| 435 | G4double zEff = particleDefinition->GetPDGCharge() / eplus + particleDefinition->GetLeptonNumber();
|
|---|
| 436 |
|
|---|
| 437 | zEff -= ( sCoefficient[0] * S_1s(k, energyTransfer, slaterEffectiveCharge[0], 1.) +
|
|---|
| 438 | sCoefficient[1] * S_2s(k, energyTransfer, slaterEffectiveCharge[1], 2.) +
|
|---|
| 439 | sCoefficient[2] * S_2p(k, energyTransfer, slaterEffectiveCharge[2], 2.) );
|
|---|
| 440 |
|
|---|
| 441 | return zEff * zEff * sigma ;
|
|---|
| 442 | }
|
|---|
| 443 |
|
|---|
| 444 | return 0;
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | G4double G4FinalStateIonisationRudd::S_1s(G4double t,
|
|---|
| 448 | G4double energyTransferred,
|
|---|
| 449 | G4double slaterEffectiveChg,
|
|---|
| 450 | G4double shellNumber)
|
|---|
| 451 | {
|
|---|
| 452 | // 1 - e^(-2r) * ( 1 + 2 r + 2 r^2)
|
|---|
| 453 | // Dingfelder, in Chattanooga 2005 proceedings, formula (7)
|
|---|
| 454 |
|
|---|
| 455 | G4double r = R(t, energyTransferred, slaterEffectiveChg, shellNumber);
|
|---|
| 456 | G4double value = 1. - std::exp(-2 * r) * ( ( 2. * r + 2. ) * r + 1. );
|
|---|
| 457 |
|
|---|
| 458 | return value;
|
|---|
| 459 | }
|
|---|
| 460 |
|
|---|
| 461 |
|
|---|
| 462 |
|
|---|
| 463 | G4double G4FinalStateIonisationRudd::S_2s(G4double t,
|
|---|
| 464 | G4double energyTransferred,
|
|---|
| 465 | G4double slaterEffectiveChg,
|
|---|
| 466 | G4double shellNumber)
|
|---|
| 467 | {
|
|---|
| 468 | // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 2 r^4)
|
|---|
| 469 | // Dingfelder, in Chattanooga 2005 proceedings, formula (8)
|
|---|
| 470 |
|
|---|
| 471 | G4double r = R(t, energyTransferred, slaterEffectiveChg, shellNumber);
|
|---|
| 472 | G4double value = 1. - std::exp(-2 * r) * (((2. * r * r + 2.) * r + 2.) * r + 1.);
|
|---|
| 473 |
|
|---|
| 474 | return value;
|
|---|
| 475 |
|
|---|
| 476 | }
|
|---|
| 477 |
|
|---|
| 478 |
|
|---|
| 479 |
|
|---|
| 480 | G4double G4FinalStateIonisationRudd::S_2p(G4double t,
|
|---|
| 481 | G4double energyTransferred,
|
|---|
| 482 | G4double slaterEffectiveChg,
|
|---|
| 483 | G4double shellNumber)
|
|---|
| 484 | {
|
|---|
| 485 | // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 4/3 r^3 + 2/3 r^4)
|
|---|
| 486 | // Dingfelder, in Chattanooga 2005 proceedings, formula (9)
|
|---|
| 487 |
|
|---|
| 488 | G4double r = R(t, energyTransferred, slaterEffectiveChg, shellNumber);
|
|---|
| 489 | G4double value = 1. - std::exp(-2 * r) * (((( 2./3. * r + 4./3.) * r + 2.) * r + 2.) * r + 1.);
|
|---|
| 490 |
|
|---|
| 491 | return value;
|
|---|
| 492 | }
|
|---|
| 493 |
|
|---|
| 494 |
|
|---|
| 495 |
|
|---|
| 496 | G4double G4FinalStateIonisationRudd::R(G4double t,
|
|---|
| 497 | G4double energyTransferred,
|
|---|
| 498 | G4double slaterEffectiveChg,
|
|---|
| 499 | G4double shellNumber)
|
|---|
| 500 | {
|
|---|
| 501 | // tElectron = m_electron / m_alpha * t
|
|---|
| 502 | // Hardcoded in Riccardo's implementation; to be corrected
|
|---|
| 503 | // Dingfelder, in Chattanooga 2005 proceedings, p 4
|
|---|
| 504 |
|
|---|
| 505 | G4double tElectron = 0.511/3728. * t;
|
|---|
| 506 | G4double value = 2. * tElectron * slaterEffectiveChg / (energyTransferred * shellNumber);
|
|---|
| 507 |
|
|---|
| 508 | return value;
|
|---|
| 509 | }
|
|---|
| 510 |
|
|---|
| 511 |
|
|---|
| 512 |
|
|---|
| 513 | G4double G4FinalStateIonisationRudd::CorrectionFactor(G4ParticleDefinition* particleDefinition, G4double k)
|
|---|
| 514 | {
|
|---|
| 515 | G4DNAGenericIonsManager *instance;
|
|---|
| 516 | instance = G4DNAGenericIonsManager::Instance();
|
|---|
| 517 |
|
|---|
| 518 | if (particleDefinition == G4Proton::Proton())
|
|---|
| 519 | {
|
|---|
| 520 | return(1.);
|
|---|
| 521 | }
|
|---|
| 522 | else
|
|---|
| 523 | if (particleDefinition == instance->GetIon("hydrogen"))
|
|---|
| 524 | {
|
|---|
| 525 | G4double value = (std::log(k/eV)-4.2)/0.5;
|
|---|
| 526 | return((0.8/(1+std::exp(value))) + 0.9);
|
|---|
| 527 | }
|
|---|
| 528 | else
|
|---|
| 529 | {
|
|---|
| 530 | return(1.);
|
|---|
| 531 | }
|
|---|
| 532 | }
|
|---|