| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | //
|
|---|
| 28 | // ===========================================================================
|
|---|
| 29 | // GEANT4 class source file
|
|---|
| 30 | //
|
|---|
| 31 | // Class: G4IonParametrisedLossModel
|
|---|
| 32 | //
|
|---|
| 33 | // Base class: G4VEmModel (utils)
|
|---|
| 34 | //
|
|---|
| 35 | // Author: Anton Lechner (Anton.Lechner@cern.ch)
|
|---|
| 36 | //
|
|---|
| 37 | // First implementation: 10. 11. 2008
|
|---|
| 38 | //
|
|---|
| 39 | // Modifications:
|
|---|
| 40 | //
|
|---|
| 41 | //
|
|---|
| 42 | // Class description:
|
|---|
| 43 | // Model for computing the energy loss of ions by employing a
|
|---|
| 44 | // parameterisation of dE/dx tables (by default ICRU 73 tables). For
|
|---|
| 45 | // ion-material combinations and/or projectile energies not covered
|
|---|
| 46 | // by this model, the G4BraggIonModel and G4BetheBloch models are
|
|---|
| 47 | // employed.
|
|---|
| 48 | //
|
|---|
| 49 | // Comments:
|
|---|
| 50 | //
|
|---|
| 51 | // ===========================================================================
|
|---|
| 52 |
|
|---|
| 53 |
|
|---|
| 54 | #include "G4IonParametrisedLossModel.hh"
|
|---|
| 55 | #include "G4MaterialStoppingICRU73.hh"
|
|---|
| 56 | #include "G4SimpleMaterialStoppingICRU73.hh"
|
|---|
| 57 | #include "G4BraggIonModel.hh"
|
|---|
| 58 | #include "G4BetheBlochModel.hh"
|
|---|
| 59 | #include "G4ParticleChangeForLoss.hh"
|
|---|
| 60 | #include "G4LossTableManager.hh"
|
|---|
| 61 | #include "G4GenericIon.hh"
|
|---|
| 62 | #include "G4Electron.hh"
|
|---|
| 63 | #include "Randomize.hh"
|
|---|
| 64 |
|
|---|
| 65 |
|
|---|
| 66 | G4IonParametrisedLossModel::G4IonParametrisedLossModel(
|
|---|
| 67 | const G4ParticleDefinition*,
|
|---|
| 68 | const G4String& name)
|
|---|
| 69 | : G4VEmModel(name),
|
|---|
| 70 | braggIonModel(0),
|
|---|
| 71 | betheBlochModel(0),
|
|---|
| 72 | nmbBins(90),
|
|---|
| 73 | nmbSubBins(100),
|
|---|
| 74 | particleChangeLoss(0),
|
|---|
| 75 | modelIsInitialised(false),
|
|---|
| 76 | corrections(0),
|
|---|
| 77 | corrFactor(1.0),
|
|---|
| 78 | energyLossLimit(0.15),
|
|---|
| 79 | cutEnergies(0) {
|
|---|
| 80 |
|
|---|
| 81 | genericIon = G4GenericIon::Definition();
|
|---|
| 82 | genericIonPDGMass = genericIon -> GetPDGMass();
|
|---|
| 83 |
|
|---|
| 84 | // The upper limit of the current model is set to 100 TeV
|
|---|
| 85 | SetHighEnergyLimit(100.0 * TeV);
|
|---|
| 86 |
|
|---|
| 87 | // The Bragg ion and Bethe Bloch models are instantiated
|
|---|
| 88 | braggIonModel = new G4BraggIonModel();
|
|---|
| 89 | betheBlochModel = new G4BetheBlochModel();
|
|---|
| 90 |
|
|---|
| 91 | // By default ICRU 73 stopping power tables are loaded
|
|---|
| 92 | AddDEDXTable<G4SimpleMaterialStoppingICRU73>();
|
|---|
| 93 | AddDEDXTable<G4MaterialStoppingICRU73>();
|
|---|
| 94 |
|
|---|
| 95 | // The boundaries for the range tables are set
|
|---|
| 96 | lowerEnergyEdgeIntegr = 0.025 * MeV;
|
|---|
| 97 | upperEnergyEdgeIntegr = betheBlochModel -> HighEnergyLimit();
|
|---|
| 98 |
|
|---|
| 99 | // Cached parameters are reset
|
|---|
| 100 | cacheParticle = 0;
|
|---|
| 101 | cacheMass = 0;
|
|---|
| 102 | cacheElecMassRatio = 0;
|
|---|
| 103 | cacheChargeSquare = 0;
|
|---|
| 104 |
|
|---|
| 105 | // Cached parameters are reset
|
|---|
| 106 | dedxCacheParticle = 0;
|
|---|
| 107 | dedxCacheMaterial = 0;
|
|---|
| 108 | dedxCacheEnergyCut = 0;
|
|---|
| 109 | dedxCacheIter = lossTableList.begin();
|
|---|
| 110 | dedxCacheTransitionEnergy = 0.0;
|
|---|
| 111 | dedxCacheTransitionFactor = 0.0;
|
|---|
| 112 | dedxCacheGenIonMassRatio = 0.0;
|
|---|
| 113 | }
|
|---|
| 114 |
|
|---|
| 115 |
|
|---|
| 116 | G4IonParametrisedLossModel::~G4IonParametrisedLossModel() {
|
|---|
| 117 |
|
|---|
| 118 | // Range vs energy table objects are deleted and the container is cleared
|
|---|
| 119 | RangeEnergyTable::iterator iterRange = r.begin();
|
|---|
| 120 | RangeEnergyTable::iterator iterRange_end = r.end();
|
|---|
| 121 |
|
|---|
| 122 | for(;iterRange != iterRange_end; iterRange++) delete iterRange -> second;
|
|---|
| 123 | r.clear();
|
|---|
| 124 |
|
|---|
| 125 | // Energy vs range table objects are deleted and the container is cleared
|
|---|
| 126 | EnergyRangeTable::iterator iterEnergy = E.begin();
|
|---|
| 127 | EnergyRangeTable::iterator iterEnergy_end = E.end();
|
|---|
| 128 |
|
|---|
| 129 | for(;iterEnergy != iterEnergy_end; iterEnergy++) delete iterEnergy -> second;
|
|---|
| 130 | E.clear();
|
|---|
| 131 |
|
|---|
| 132 | // dE/dx table objects are deleted and the container is cleared
|
|---|
| 133 | LossTableList::iterator iterTables = lossTableList.begin();
|
|---|
| 134 | LossTableList::iterator iterTables_end = lossTableList.end();
|
|---|
| 135 |
|
|---|
| 136 | for(;iterTables != iterTables_end; iterTables++) delete *iterTables;
|
|---|
| 137 | lossTableList.clear();
|
|---|
| 138 |
|
|---|
| 139 | // The Bragg ion and Bethe Bloch objects are deleted
|
|---|
| 140 | delete betheBlochModel;
|
|---|
| 141 | delete braggIonModel;
|
|---|
| 142 | }
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | G4double G4IonParametrisedLossModel::MinEnergyCut(
|
|---|
| 146 | const G4ParticleDefinition*,
|
|---|
| 147 | const G4MaterialCutsCouple* couple) {
|
|---|
| 148 |
|
|---|
| 149 | return couple -> GetMaterial() -> GetIonisation() ->
|
|---|
| 150 | GetMeanExcitationEnergy();
|
|---|
| 151 | }
|
|---|
| 152 |
|
|---|
| 153 |
|
|---|
| 154 | void G4IonParametrisedLossModel::Initialise(
|
|---|
| 155 | const G4ParticleDefinition* particle,
|
|---|
| 156 | const G4DataVector& cuts) {
|
|---|
| 157 |
|
|---|
| 158 | // Cached parameters are reset
|
|---|
| 159 | cacheParticle = 0;
|
|---|
| 160 | cacheMass = 0;
|
|---|
| 161 | cacheElecMassRatio = 0;
|
|---|
| 162 | cacheChargeSquare = 0;
|
|---|
| 163 |
|
|---|
| 164 | // Cached parameters are reset
|
|---|
| 165 | dedxCacheParticle = 0;
|
|---|
| 166 | dedxCacheMaterial = 0;
|
|---|
| 167 | dedxCacheEnergyCut = 0;
|
|---|
| 168 | dedxCacheIter = lossTableList.begin();
|
|---|
| 169 | dedxCacheTransitionEnergy = 0.0;
|
|---|
| 170 | dedxCacheTransitionFactor = 0.0;
|
|---|
| 171 | dedxCacheGenIonMassRatio = 0.0;
|
|---|
| 172 |
|
|---|
| 173 | // The cache of loss tables is cleared
|
|---|
| 174 | LossTableList::iterator iterTables = lossTableList.begin();
|
|---|
| 175 | LossTableList::iterator iterTables_end = lossTableList.end();
|
|---|
| 176 |
|
|---|
| 177 | for(;iterTables != iterTables_end; iterTables++)
|
|---|
| 178 | (*iterTables) -> ClearCache();
|
|---|
| 179 |
|
|---|
| 180 | // Range vs energy and energy vs range vectors from previous runs are
|
|---|
| 181 | // cleared
|
|---|
| 182 | RangeEnergyTable::iterator iterRange = r.begin();
|
|---|
| 183 | RangeEnergyTable::iterator iterRange_end = r.end();
|
|---|
| 184 |
|
|---|
| 185 | for(;iterRange != iterRange_end; iterRange++) delete iterRange -> second;
|
|---|
| 186 | r.clear();
|
|---|
| 187 |
|
|---|
| 188 | EnergyRangeTable::iterator iterEnergy = E.begin();
|
|---|
| 189 | EnergyRangeTable::iterator iterEnergy_end = E.end();
|
|---|
| 190 |
|
|---|
| 191 | for(;iterEnergy != iterEnergy_end; iterEnergy++) delete iterEnergy -> second;
|
|---|
| 192 | E.clear();
|
|---|
| 193 |
|
|---|
| 194 | // The cut energies are (re)loaded
|
|---|
| 195 | size_t size = cuts.size();
|
|---|
| 196 | cutEnergies.clear();
|
|---|
| 197 | for(size_t i = 0; i < size; i++) cutEnergies.push_back(cuts[i]);
|
|---|
| 198 |
|
|---|
| 199 | // The particle change object is cast to G4ParticleChangeForLoss
|
|---|
| 200 | if(! modelIsInitialised) {
|
|---|
| 201 |
|
|---|
| 202 | modelIsInitialised = true;
|
|---|
| 203 | corrections = G4LossTableManager::Instance() -> EmCorrections();
|
|---|
| 204 |
|
|---|
| 205 | if(!particleChangeLoss) {
|
|---|
| 206 | if(pParticleChange) {
|
|---|
| 207 |
|
|---|
| 208 | particleChangeLoss = reinterpret_cast<G4ParticleChangeForLoss*>
|
|---|
| 209 | (pParticleChange);
|
|---|
| 210 | }
|
|---|
| 211 | else {
|
|---|
| 212 | particleChangeLoss = new G4ParticleChangeForLoss();
|
|---|
| 213 | }
|
|---|
| 214 | }
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | // The G4BraggIonModel and G4BetheBlochModel instances are initialised with
|
|---|
| 218 | // the same settings as the current model:
|
|---|
| 219 | braggIonModel -> Initialise(particle, cuts);
|
|---|
| 220 | betheBlochModel -> Initialise(particle, cuts);
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 |
|
|---|
| 224 | G4double G4IonParametrisedLossModel::ComputeCrossSectionPerAtom(
|
|---|
| 225 | const G4ParticleDefinition* particle,
|
|---|
| 226 | G4double kineticEnergy,
|
|---|
| 227 | G4double atomicNumber,
|
|---|
| 228 | G4double,
|
|---|
| 229 | G4double cutEnergy,
|
|---|
| 230 | G4double maxKinEnergy) {
|
|---|
| 231 |
|
|---|
| 232 | // ############## Cross section per atom ################################
|
|---|
| 233 | // Function computes ionization cross section per atom
|
|---|
| 234 | //
|
|---|
| 235 | // See Geant4 physics reference manual (version 9.1), section 9.1.3
|
|---|
| 236 | //
|
|---|
| 237 | // Ref.: W.M. Yao et al, Jour. of Phys. G 33 (2006) 1.
|
|---|
| 238 | // B. Rossi, High energy particles, New York, NY: Prentice-Hall (1952).
|
|---|
| 239 | //
|
|---|
| 240 | // (Implementation adapted from G4BraggIonModel)
|
|---|
| 241 |
|
|---|
| 242 | G4double crosssection = 0.0;
|
|---|
| 243 | G4double tmax = MaxSecondaryEnergy(particle, kineticEnergy);
|
|---|
| 244 | G4double maxEnergy = std::min(tmax, maxKinEnergy);
|
|---|
| 245 |
|
|---|
| 246 | if(cutEnergy < tmax) {
|
|---|
| 247 |
|
|---|
| 248 | G4double energy = kineticEnergy + cacheMass;
|
|---|
| 249 | G4double betaSquared = kineticEnergy *
|
|---|
| 250 | (energy + cacheMass) / (energy * energy);
|
|---|
| 251 |
|
|---|
| 252 | crosssection = 1.0 / cutEnergy - 1.0 / maxEnergy -
|
|---|
| 253 | betaSquared * std::log(maxEnergy / cutEnergy) / tmax;
|
|---|
| 254 |
|
|---|
| 255 | crosssection *= twopi_mc2_rcl2 * cacheChargeSquare / betaSquared;
|
|---|
| 256 | }
|
|---|
| 257 |
|
|---|
| 258 | #ifdef PRINT_DEBUG_CS
|
|---|
| 259 | G4cout << "########################################################"
|
|---|
| 260 | << G4endl
|
|---|
| 261 | << "# G4IonParametrisedLossModel::ComputeCrossSectionPerAtom"
|
|---|
| 262 | << G4endl
|
|---|
| 263 | << "# particle =" << particle -> GetParticleName()
|
|---|
| 264 | << G4endl
|
|---|
| 265 | << "# cut(MeV) = " << cutEnergy/MeV
|
|---|
| 266 | << G4endl;
|
|---|
| 267 |
|
|---|
| 268 | G4cout << "#"
|
|---|
| 269 | << std::setw(13) << std::right << "E(MeV)"
|
|---|
| 270 | << std::setw(14) << "CS(um)"
|
|---|
| 271 | << std::setw(14) << "E_max_sec(MeV)"
|
|---|
| 272 | << G4endl
|
|---|
| 273 | << "# ------------------------------------------------------"
|
|---|
| 274 | << G4endl;
|
|---|
| 275 |
|
|---|
| 276 | G4cout << std::setw(14) << std::right << kineticEnergy / MeV
|
|---|
| 277 | << std::setw(14) << crosssection / (um * um)
|
|---|
| 278 | << std::setw(14) << tmax / MeV
|
|---|
| 279 | << G4endl;
|
|---|
| 280 | #endif
|
|---|
| 281 |
|
|---|
| 282 | crosssection *= atomicNumber;
|
|---|
| 283 |
|
|---|
| 284 | return crosssection;
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 |
|
|---|
| 288 | G4double G4IonParametrisedLossModel::CrossSectionPerVolume(
|
|---|
| 289 | const G4Material* material,
|
|---|
| 290 | const G4ParticleDefinition* particle,
|
|---|
| 291 | G4double kineticEnergy,
|
|---|
| 292 | G4double cutEnergy,
|
|---|
| 293 | G4double maxEnergy) {
|
|---|
| 294 |
|
|---|
| 295 | G4double nbElecPerVolume = material -> GetTotNbOfElectPerVolume();
|
|---|
| 296 | G4double cross = ComputeCrossSectionPerAtom(particle,
|
|---|
| 297 | kineticEnergy,
|
|---|
| 298 | nbElecPerVolume, 0,
|
|---|
| 299 | cutEnergy,
|
|---|
| 300 | maxEnergy);
|
|---|
| 301 |
|
|---|
| 302 | return cross;
|
|---|
| 303 | }
|
|---|
| 304 |
|
|---|
| 305 |
|
|---|
| 306 | G4double G4IonParametrisedLossModel::ComputeDEDXPerVolume(
|
|---|
| 307 | const G4Material* material,
|
|---|
| 308 | const G4ParticleDefinition* particle,
|
|---|
| 309 | G4double kineticEnergy,
|
|---|
| 310 | G4double cutEnergy) {
|
|---|
| 311 |
|
|---|
| 312 | // ############## dE/dx ##################################################
|
|---|
| 313 | // Function computes dE/dx values, where following rules are adopted:
|
|---|
| 314 | // A. If the ion-material pair is covered by any native ion data
|
|---|
| 315 | // parameterisation, then:
|
|---|
| 316 | // * This parameterization is used for energies below a given energy
|
|---|
| 317 | // limit,
|
|---|
| 318 | // * whereas above the limit the Bethe-Bloch model is applied, in
|
|---|
| 319 | // combination with an effective charge estimate and high order
|
|---|
| 320 | // correction terms.
|
|---|
| 321 | // A smoothing procedure is applied to dE/dx values computed with
|
|---|
| 322 | // the second approach. The smoothing factor is based on the dE/dx
|
|---|
| 323 | // values of both approaches at the transition energy (high order
|
|---|
| 324 | // correction terms are included in the calculation of the transition
|
|---|
| 325 | // factor).
|
|---|
| 326 | // B. If the particle is a generic ion, the BraggIon and Bethe-Bloch
|
|---|
| 327 | // models are used and a smoothing procedure is applied to values
|
|---|
| 328 | // obtained with the second approach.
|
|---|
| 329 | // C. If the ion-material is not covered by any ion data parameterization
|
|---|
| 330 | // then:
|
|---|
| 331 | // * The BraggIon model is used for energies below a given energy
|
|---|
| 332 | // limit,
|
|---|
| 333 | // * whereas above the limit the Bethe-Bloch model is applied, in
|
|---|
| 334 | // combination with an effective charge estimate and high order
|
|---|
| 335 | // correction terms.
|
|---|
| 336 | // Also in this case, a smoothing procedure is applied to dE/dx values
|
|---|
| 337 | // computed with the second model.
|
|---|
| 338 |
|
|---|
| 339 | G4double dEdx = 0.0;
|
|---|
| 340 | UpdateDEDXCache(particle, material, cutEnergy);
|
|---|
| 341 |
|
|---|
| 342 | LossTableList::iterator iter = dedxCacheIter;
|
|---|
| 343 |
|
|---|
| 344 | if(iter != lossTableList.begin()) {
|
|---|
| 345 |
|
|---|
| 346 | G4double transitionEnergy = dedxCacheTransitionEnergy;
|
|---|
| 347 |
|
|---|
| 348 | if(transitionEnergy > kineticEnergy) {
|
|---|
| 349 |
|
|---|
| 350 | dEdx = (*iter) -> GetDEDX(particle, material, kineticEnergy);
|
|---|
| 351 |
|
|---|
| 352 | G4double dEdxDeltaRays = DeltaRayMeanEnergyTransferRate(material,
|
|---|
| 353 | particle,
|
|---|
| 354 | kineticEnergy,
|
|---|
| 355 | cutEnergy);
|
|---|
| 356 | dEdx -= dEdxDeltaRays;
|
|---|
| 357 | }
|
|---|
| 358 | else {
|
|---|
| 359 | G4double massRatio = dedxCacheGenIonMassRatio;
|
|---|
| 360 |
|
|---|
| 361 | G4double chargeSquare =
|
|---|
| 362 | GetChargeSquareRatio(particle, material, kineticEnergy);
|
|---|
| 363 |
|
|---|
| 364 | G4double scaledKineticEnergy = kineticEnergy * massRatio;
|
|---|
| 365 | G4double scaledTransitionEnergy = transitionEnergy * massRatio;
|
|---|
| 366 |
|
|---|
| 367 | G4double lowEnergyLimit = betheBlochModel -> LowEnergyLimit();
|
|---|
| 368 |
|
|---|
| 369 | if(scaledTransitionEnergy >= lowEnergyLimit) {
|
|---|
| 370 |
|
|---|
| 371 | G4double factor = 1.0 + dedxCacheTransitionFactor /
|
|---|
| 372 | kineticEnergy;
|
|---|
| 373 |
|
|---|
| 374 | dEdx = betheBlochModel -> ComputeDEDXPerVolume(
|
|---|
| 375 | material, genericIon,
|
|---|
| 376 | scaledKineticEnergy, cutEnergy);
|
|---|
| 377 | dEdx *= factor;
|
|---|
| 378 |
|
|---|
| 379 | }
|
|---|
| 380 | dEdx *= chargeSquare;
|
|---|
| 381 |
|
|---|
| 382 | dEdx += corrections -> ComputeIonCorrections(particle,
|
|---|
| 383 | material, kineticEnergy);
|
|---|
| 384 | }
|
|---|
| 385 | }
|
|---|
| 386 | else {
|
|---|
| 387 | G4double massRatio = 1.0;
|
|---|
| 388 | G4double chargeSquare = 1.0;
|
|---|
| 389 |
|
|---|
| 390 | if(particle != genericIon) {
|
|---|
| 391 |
|
|---|
| 392 | chargeSquare = GetChargeSquareRatio(particle, material, kineticEnergy);
|
|---|
| 393 | massRatio = genericIonPDGMass / particle -> GetPDGMass();
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | G4double scaledKineticEnergy = kineticEnergy * massRatio;
|
|---|
| 397 |
|
|---|
| 398 | G4double lowEnergyLimit = betheBlochModel -> LowEnergyLimit();
|
|---|
| 399 | if(scaledKineticEnergy < lowEnergyLimit) {
|
|---|
| 400 | dEdx = braggIonModel -> ComputeDEDXPerVolume(
|
|---|
| 401 | material, genericIon,
|
|---|
| 402 | scaledKineticEnergy, cutEnergy);
|
|---|
| 403 |
|
|---|
| 404 | dEdx *= chargeSquare;
|
|---|
| 405 | }
|
|---|
| 406 | else {
|
|---|
| 407 | G4double dEdxLimitParam = braggIonModel -> ComputeDEDXPerVolume(
|
|---|
| 408 | material, genericIon,
|
|---|
| 409 | lowEnergyLimit, cutEnergy);
|
|---|
| 410 |
|
|---|
| 411 | G4double dEdxLimitBetheBloch = betheBlochModel -> ComputeDEDXPerVolume(
|
|---|
| 412 | material, genericIon,
|
|---|
| 413 | lowEnergyLimit, cutEnergy);
|
|---|
| 414 |
|
|---|
| 415 | if(particle != genericIon) {
|
|---|
| 416 | G4double chargeSquareLowEnergyLimit =
|
|---|
| 417 | GetChargeSquareRatio(particle, material,
|
|---|
| 418 | lowEnergyLimit / massRatio);
|
|---|
| 419 |
|
|---|
| 420 | dEdxLimitParam *= chargeSquareLowEnergyLimit;
|
|---|
| 421 | dEdxLimitBetheBloch *= chargeSquareLowEnergyLimit;
|
|---|
| 422 |
|
|---|
| 423 | dEdxLimitBetheBloch +=
|
|---|
| 424 | corrections -> ComputeIonCorrections(particle,
|
|---|
| 425 | material, lowEnergyLimit / massRatio);
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | G4double factor = (1.0 + (dEdxLimitParam/dEdxLimitBetheBloch - 1.0)
|
|---|
| 429 | * lowEnergyLimit / scaledKineticEnergy);
|
|---|
| 430 |
|
|---|
| 431 | dEdx = betheBlochModel -> ComputeDEDXPerVolume(
|
|---|
| 432 | material, genericIon,
|
|---|
| 433 | scaledKineticEnergy, cutEnergy);
|
|---|
| 434 | dEdx *= factor;
|
|---|
| 435 |
|
|---|
| 436 | dEdx *= chargeSquare;
|
|---|
| 437 |
|
|---|
| 438 | if(particle != genericIon) {
|
|---|
| 439 | dEdx += corrections -> ComputeIonCorrections(particle,
|
|---|
| 440 | material, kineticEnergy);
|
|---|
| 441 | }
|
|---|
| 442 | }
|
|---|
| 443 |
|
|---|
| 444 | }
|
|---|
| 445 |
|
|---|
| 446 | if (dEdx < 0.0) dEdx = 0.0;
|
|---|
| 447 |
|
|---|
| 448 | #ifdef PRINT_DEBUG
|
|---|
| 449 |
|
|---|
| 450 | G4cout << "########################################################"
|
|---|
| 451 | << G4endl
|
|---|
| 452 | << "# G4IonParametrisedLossModel::ComputeDEDXPerVolume"
|
|---|
| 453 | << G4endl
|
|---|
| 454 | << "# Material =" << material -> GetName()
|
|---|
| 455 | << G4endl
|
|---|
| 456 | << "# Particle = " << particle -> GetParticleName()
|
|---|
| 457 | << G4endl;
|
|---|
| 458 | << "# Cut energy (MeV) = " << cutEnergy/MeV
|
|---|
| 459 | << G4endl;
|
|---|
| 460 |
|
|---|
| 461 | G4cout << "#"
|
|---|
| 462 | << std::setw(13) << std::right << "E(MeV)"
|
|---|
| 463 | << std::setw(14) << "dE/dx(keV/um)"
|
|---|
| 464 | << std::setw(14) << "d:dE/dx(keV/um)"
|
|---|
| 465 | << std::setw(14) << "(d:dE/dx)/dE/dx"
|
|---|
| 466 | << G4endl
|
|---|
| 467 | << "# ------------------------------------------------------"
|
|---|
| 468 | << G4endl;
|
|---|
| 469 |
|
|---|
| 470 | G4cout << std::setw(14) << std::right << kineticEnergy / MeV
|
|---|
| 471 | << std::setw(14) << (dEdx + dEdXDeltaRays) / keV * um
|
|---|
| 472 | << std::setw(14) << dEdXDeltaRays / keV * um
|
|---|
| 473 | << std::setw(14) << dEdXDeltaRays / (dEdx + dEdXDeltaRays) * 100.0
|
|---|
| 474 | << G4endl;
|
|---|
| 475 | #endif
|
|---|
| 476 |
|
|---|
| 477 | return dEdx;
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 |
|
|---|
| 481 | void G4IonParametrisedLossModel::PrintDEDXTable(
|
|---|
| 482 | const G4ParticleDefinition* particle, // Projectile (ion)
|
|---|
| 483 | const G4Material* material, // Absorber material
|
|---|
| 484 | G4double lowerBoundary, // Minimum energy per nucleon
|
|---|
| 485 | G4double upperBoundary, // Maximum energy per nucleon
|
|---|
| 486 | G4int nmbBins, // Number of bins
|
|---|
| 487 | G4bool logScaleEnergy) { // Logarithmic scaling of energy
|
|---|
| 488 |
|
|---|
| 489 | G4double atomicMassNumber = particle -> GetAtomicMass();
|
|---|
| 490 | G4double materialDensity = material -> GetDensity();
|
|---|
| 491 |
|
|---|
| 492 | G4cout << "# dE/dx table for " << particle -> GetParticleName()
|
|---|
| 493 | << " in material " << material -> GetName()
|
|---|
| 494 | << " of density " << materialDensity / g * cm3
|
|---|
| 495 | << " g/cm3"
|
|---|
| 496 | << G4endl
|
|---|
| 497 | << "# Projectile mass number A1 = " << atomicMassNumber
|
|---|
| 498 | << G4endl
|
|---|
| 499 | << "# ------------------------------------------------------"
|
|---|
| 500 | << G4endl;
|
|---|
| 501 | G4cout << "#"
|
|---|
| 502 | << std::setw(13) << std::right << "E"
|
|---|
| 503 | << std::setw(14) << "E/A1"
|
|---|
| 504 | << std::setw(14) << "dE/dx"
|
|---|
| 505 | << std::setw(14) << "1/rho*dE/dx"
|
|---|
| 506 | << G4endl;
|
|---|
| 507 | G4cout << "#"
|
|---|
| 508 | << std::setw(13) << std::right << "(MeV)"
|
|---|
| 509 | << std::setw(14) << "(MeV)"
|
|---|
| 510 | << std::setw(14) << "(MeV/mm)"
|
|---|
| 511 | << std::setw(14) << "(MeV*cm2/mg)"
|
|---|
| 512 | << G4endl
|
|---|
| 513 | << "# ------------------------------------------------------"
|
|---|
| 514 | << G4endl;
|
|---|
| 515 |
|
|---|
| 516 | G4double energyLowerBoundary = lowerBoundary * atomicMassNumber;
|
|---|
| 517 | G4double energyUpperBoundary = upperBoundary * atomicMassNumber;
|
|---|
| 518 |
|
|---|
| 519 | if(logScaleEnergy) {
|
|---|
| 520 |
|
|---|
| 521 | energyLowerBoundary = std::log(energyLowerBoundary);
|
|---|
| 522 | energyUpperBoundary = std::log(energyUpperBoundary);
|
|---|
| 523 | }
|
|---|
| 524 |
|
|---|
| 525 | G4double deltaEnergy = (energyUpperBoundary - energyLowerBoundary) /
|
|---|
| 526 | G4double(nmbBins);
|
|---|
| 527 |
|
|---|
| 528 | for(int i = 0; i < nmbBins + 1; i++) {
|
|---|
| 529 |
|
|---|
| 530 | G4double energy = energyLowerBoundary + i * deltaEnergy;
|
|---|
| 531 | if(logScaleEnergy) energy = std::exp(energy);
|
|---|
| 532 |
|
|---|
| 533 | G4double dedx = ComputeDEDXPerVolume(material, particle, energy, DBL_MAX);
|
|---|
| 534 | G4cout.precision(6);
|
|---|
| 535 | G4cout << std::setw(14) << std::right << energy / MeV
|
|---|
| 536 | << std::setw(14) << energy / atomicMassNumber / MeV
|
|---|
| 537 | << std::setw(14) << dedx / MeV * mm
|
|---|
| 538 | << std::setw(14) << dedx / materialDensity / (MeV*cm2/(0.001*g))
|
|---|
| 539 | << G4endl;
|
|---|
| 540 | }
|
|---|
| 541 | }
|
|---|
| 542 |
|
|---|
| 543 |
|
|---|
| 544 | void G4IonParametrisedLossModel::SampleSecondaries(
|
|---|
| 545 | std::vector<G4DynamicParticle*>* secondaries,
|
|---|
| 546 | const G4MaterialCutsCouple*,
|
|---|
| 547 | const G4DynamicParticle* particle,
|
|---|
| 548 | G4double cutKinEnergySec,
|
|---|
| 549 | G4double userMaxKinEnergySec) {
|
|---|
| 550 |
|
|---|
| 551 |
|
|---|
| 552 | // ############## Sampling of secondaries #################################
|
|---|
| 553 | // The probability density function (pdf) of the kinetic energy T of a
|
|---|
| 554 | // secondary electron may be written as:
|
|---|
| 555 | // pdf(T) = f(T) * g(T)
|
|---|
| 556 | // where
|
|---|
| 557 | // f(T) = (Tmax - Tcut) / (Tmax * Tcut) * (1 / T^2)
|
|---|
| 558 | // g(T) = 1 - beta^2 * T / Tmax
|
|---|
| 559 | // where Tmax is the maximum kinetic energy of the secondary, Tcut
|
|---|
| 560 | // is the lower energy cut and beta is the kinetic energy of the
|
|---|
| 561 | // projectile.
|
|---|
| 562 | //
|
|---|
| 563 | // Sampling of the kinetic energy of a secondary electron:
|
|---|
| 564 | // 1) T0 is sampled from f(T) using the cumulated distribution function
|
|---|
| 565 | // F(T) = int_Tcut^T f(T')dT'
|
|---|
| 566 | // 2) T is accepted or rejected by evaluating the rejection function g(T)
|
|---|
| 567 | // at the sampled energy T0 against a randomly sampled value
|
|---|
| 568 | //
|
|---|
| 569 | //
|
|---|
| 570 | // See Geant4 physics reference manual (version 9.1), section 9.1.4
|
|---|
| 571 | //
|
|---|
| 572 | //
|
|---|
| 573 | // Reference pdf: W.M. Yao et al, Jour. of Phys. G 33 (2006) 1.
|
|---|
| 574 | //
|
|---|
| 575 | // (Implementation adapted from G4BraggIonModel)
|
|---|
| 576 |
|
|---|
| 577 | G4double rossiMaxKinEnergySec = MaxSecondaryKinEnergy(particle);
|
|---|
| 578 | G4double maxKinEnergySec =
|
|---|
| 579 | std::min(rossiMaxKinEnergySec, userMaxKinEnergySec);
|
|---|
| 580 |
|
|---|
| 581 | if(cutKinEnergySec >= maxKinEnergySec) return;
|
|---|
| 582 |
|
|---|
| 583 | G4double kineticEnergy = particle -> GetKineticEnergy();
|
|---|
| 584 | G4ThreeVector direction = particle ->GetMomentumDirection();
|
|---|
| 585 |
|
|---|
| 586 | G4double energy = kineticEnergy + cacheMass;
|
|---|
| 587 | G4double betaSquared = kineticEnergy *
|
|---|
| 588 | (energy + cacheMass) / (energy * energy);
|
|---|
| 589 |
|
|---|
| 590 | G4double kinEnergySec;
|
|---|
| 591 | G4double g;
|
|---|
| 592 |
|
|---|
| 593 | do {
|
|---|
| 594 |
|
|---|
| 595 | // Sampling kinetic energy from f(T) (using F(T)):
|
|---|
| 596 | G4double xi = G4UniformRand();
|
|---|
| 597 | kinEnergySec = cutKinEnergySec * maxKinEnergySec /
|
|---|
| 598 | (maxKinEnergySec * (1.0 - xi) + cutKinEnergySec * xi);
|
|---|
| 599 |
|
|---|
| 600 | // Deriving the value of the rejection function at the obtained kinetic
|
|---|
| 601 | // energy:
|
|---|
| 602 | g = 1.0 - betaSquared * kinEnergySec / rossiMaxKinEnergySec;
|
|---|
| 603 |
|
|---|
| 604 | if(g > 1.0) {
|
|---|
| 605 | G4cout << "G4IonParametrisedLossModel::SampleSecondary Warning: "
|
|---|
| 606 | << "Majorant 1.0 < "
|
|---|
| 607 | << g << " for e= " << kinEnergySec
|
|---|
| 608 | << G4endl;
|
|---|
| 609 | }
|
|---|
| 610 |
|
|---|
| 611 | } while( G4UniformRand() >= g );
|
|---|
| 612 |
|
|---|
| 613 | G4double momentumSec =
|
|---|
| 614 | std::sqrt(kinEnergySec * (kinEnergySec + 2.0 * electron_mass_c2));
|
|---|
| 615 |
|
|---|
| 616 | G4double totMomentum = energy*std::sqrt(betaSquared);
|
|---|
| 617 | G4double cost = kinEnergySec * (energy + electron_mass_c2) /
|
|---|
| 618 | (momentumSec * totMomentum);
|
|---|
| 619 | if(cost > 1.0) cost = 1.0;
|
|---|
| 620 | G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
|
|---|
| 621 |
|
|---|
| 622 | G4double phi = twopi * G4UniformRand() ;
|
|---|
| 623 |
|
|---|
| 624 | G4ThreeVector directionSec(sint*std::cos(phi),sint*std::sin(phi), cost) ;
|
|---|
| 625 | directionSec.rotateUz(direction);
|
|---|
| 626 |
|
|---|
| 627 | // create G4DynamicParticle object for delta ray
|
|---|
| 628 | G4DynamicParticle* delta = new G4DynamicParticle(G4Electron::Definition(),
|
|---|
| 629 | directionSec,
|
|---|
| 630 | kinEnergySec);
|
|---|
| 631 |
|
|---|
| 632 | secondaries -> push_back(delta);
|
|---|
| 633 |
|
|---|
| 634 | // Change kinematics of primary particle
|
|---|
| 635 | kineticEnergy -= kinEnergySec;
|
|---|
| 636 | G4ThreeVector finalP = direction*totMomentum - directionSec*momentumSec;
|
|---|
| 637 | finalP = finalP.unit();
|
|---|
| 638 |
|
|---|
| 639 | particleChangeLoss -> SetProposedKineticEnergy(kineticEnergy);
|
|---|
| 640 | particleChangeLoss -> SetProposedMomentumDirection(finalP);
|
|---|
| 641 | }
|
|---|
| 642 |
|
|---|
| 643 |
|
|---|
| 644 | void G4IonParametrisedLossModel::UpdateDEDXCache(
|
|---|
| 645 | const G4ParticleDefinition* particle,
|
|---|
| 646 | const G4Material* material,
|
|---|
| 647 | G4double cutEnergy) {
|
|---|
| 648 |
|
|---|
| 649 | // ############## Caching ##################################################
|
|---|
| 650 | // If the ion-material combination is covered by any native ion data
|
|---|
| 651 | // parameterisation (for low energies), a transition factor is computed
|
|---|
| 652 | // which is applied to Bethe-Bloch results at higher energies to
|
|---|
| 653 | // guarantee a smooth transition.
|
|---|
| 654 | // This factor only needs to be calculated for the first step an ion
|
|---|
| 655 | // performs inside a certain material.
|
|---|
| 656 |
|
|---|
| 657 | if(particle == dedxCacheParticle &&
|
|---|
| 658 | material == dedxCacheMaterial &&
|
|---|
| 659 | cutEnergy == dedxCacheEnergyCut) {
|
|---|
| 660 | }
|
|---|
| 661 | else {
|
|---|
| 662 |
|
|---|
| 663 | dedxCacheParticle = particle;
|
|---|
| 664 | dedxCacheMaterial = material;
|
|---|
| 665 | dedxCacheEnergyCut = cutEnergy;
|
|---|
| 666 |
|
|---|
| 667 | G4double massRatio = genericIonPDGMass / particle -> GetPDGMass();
|
|---|
| 668 | dedxCacheGenIonMassRatio = massRatio;
|
|---|
| 669 |
|
|---|
| 670 | LossTableList::iterator iter = IsApplicable(particle, material);
|
|---|
| 671 | dedxCacheIter = iter;
|
|---|
| 672 |
|
|---|
| 673 | // If any table is applicable, the transition factor is computed:
|
|---|
| 674 | if(iter != lossTableList.begin()) {
|
|---|
| 675 |
|
|---|
| 676 | // Retrieving the transition energy from the parameterisation table
|
|---|
| 677 | G4double transitionEnergy =
|
|---|
| 678 | (*iter) -> GetUpperEnergyEdge(particle, material);
|
|---|
| 679 | dedxCacheTransitionEnergy = transitionEnergy;
|
|---|
| 680 |
|
|---|
| 681 | // Computing dE/dx from low-energy parameterisation at
|
|---|
| 682 | // transition energy
|
|---|
| 683 | G4double dEdxParam = (*iter) -> GetDEDX(particle, material,
|
|---|
| 684 | transitionEnergy);
|
|---|
| 685 |
|
|---|
| 686 | G4double dEdxDeltaRays = DeltaRayMeanEnergyTransferRate(material,
|
|---|
| 687 | particle,
|
|---|
| 688 | transitionEnergy,
|
|---|
| 689 | cutEnergy);
|
|---|
| 690 | dEdxParam -= dEdxDeltaRays;
|
|---|
| 691 |
|
|---|
| 692 | // Computing dE/dx from Bethe-Bloch formula at transition
|
|---|
| 693 | // energy
|
|---|
| 694 | G4double transitionChargeSquare =
|
|---|
| 695 | GetChargeSquareRatio(particle, material, transitionEnergy);
|
|---|
| 696 |
|
|---|
| 697 | G4double scaledTransitionEnergy = transitionEnergy * massRatio;
|
|---|
| 698 |
|
|---|
| 699 | G4double dEdxBetheBloch =
|
|---|
| 700 | betheBlochModel -> ComputeDEDXPerVolume(
|
|---|
| 701 | material, genericIon,
|
|---|
| 702 | scaledTransitionEnergy, cutEnergy);
|
|---|
| 703 | dEdxBetheBloch *= transitionChargeSquare;
|
|---|
| 704 |
|
|---|
| 705 | // Additionally, high order corrections are added
|
|---|
| 706 | dEdxBetheBloch +=
|
|---|
| 707 | corrections -> ComputeIonCorrections(particle,
|
|---|
| 708 | material, transitionEnergy);
|
|---|
| 709 |
|
|---|
| 710 | // Computing transition factor from both dE/dx values
|
|---|
| 711 | dedxCacheTransitionFactor =
|
|---|
| 712 | (dEdxParam - dEdxBetheBloch)/dEdxBetheBloch
|
|---|
| 713 | * transitionEnergy;
|
|---|
| 714 |
|
|---|
| 715 | // Build range-energy and energy-range vectors if they don't exist
|
|---|
| 716 | IonMatCouple ionMatCouple = std::make_pair(particle, material);
|
|---|
| 717 | RangeEnergyTable::iterator iterRange = r.find(ionMatCouple);
|
|---|
| 718 |
|
|---|
| 719 | if(iterRange == r.end()) BuildRangeVector(particle, material,
|
|---|
| 720 | cutEnergy);
|
|---|
| 721 |
|
|---|
| 722 | dedxCacheEnergyRange = E[ionMatCouple];
|
|---|
| 723 | dedxCacheRangeEnergy = r[ionMatCouple];
|
|---|
| 724 | }
|
|---|
| 725 | else {
|
|---|
| 726 |
|
|---|
| 727 | dedxCacheParticle = particle;
|
|---|
| 728 | dedxCacheMaterial = material;
|
|---|
| 729 | dedxCacheEnergyCut = cutEnergy;
|
|---|
| 730 |
|
|---|
| 731 | dedxCacheGenIonMassRatio =
|
|---|
| 732 | genericIonPDGMass / particle -> GetPDGMass();
|
|---|
| 733 |
|
|---|
| 734 | dedxCacheTransitionEnergy = 0.0;
|
|---|
| 735 | dedxCacheTransitionFactor = 0.0;
|
|---|
| 736 | dedxCacheEnergyRange = 0;
|
|---|
| 737 | dedxCacheRangeEnergy = 0;
|
|---|
| 738 | }
|
|---|
| 739 | }
|
|---|
| 740 | }
|
|---|
| 741 |
|
|---|
| 742 |
|
|---|
| 743 | void G4IonParametrisedLossModel::CorrectionsAlongStep(
|
|---|
| 744 | const G4MaterialCutsCouple* couple,
|
|---|
| 745 | const G4DynamicParticle* dynamicParticle,
|
|---|
| 746 | G4double& eloss,
|
|---|
| 747 | G4double&,
|
|---|
| 748 | G4double length) {
|
|---|
| 749 |
|
|---|
| 750 | // ############## Corrections for along step energy loss calculation ######
|
|---|
| 751 | // The computed energy loss (due to electronic stopping) is overwritten
|
|---|
| 752 | // by this function if an ion data parameterization is available for the
|
|---|
| 753 | // current ion-material pair.
|
|---|
| 754 | // No action on the energy loss (due to electronic stopping) is performed
|
|---|
| 755 | // if no parameterization is available. In this case the original
|
|---|
| 756 | // generic ion tables (in combination with the effective charge) are used
|
|---|
| 757 | // in the along step DoIt function.
|
|---|
| 758 | //
|
|---|
| 759 | // Contributon due to nuclear stopping are applied in any case (given the
|
|---|
| 760 | // nuclear stopping flag is set).
|
|---|
| 761 | //
|
|---|
| 762 | // (Implementation partly adapted from G4BraggIonModel/G4BetheBlochModel)
|
|---|
| 763 |
|
|---|
| 764 | const G4ParticleDefinition* particle = dynamicParticle -> GetDefinition();
|
|---|
| 765 | const G4Material* material = couple -> GetMaterial();
|
|---|
| 766 |
|
|---|
| 767 | G4double kineticEnergy = dynamicParticle -> GetKineticEnergy();
|
|---|
| 768 |
|
|---|
| 769 | G4double cutEnergy = DBL_MAX;
|
|---|
| 770 | size_t cutIndex = couple -> GetIndex();
|
|---|
| 771 | cutEnergy = cutEnergies[cutIndex];
|
|---|
| 772 |
|
|---|
| 773 | UpdateDEDXCache(particle, material, cutEnergy);
|
|---|
| 774 |
|
|---|
| 775 | LossTableList::iterator iter = dedxCacheIter;
|
|---|
| 776 |
|
|---|
| 777 | // If parameterization for ions is available the electronic energy loss
|
|---|
| 778 | // is overwritten
|
|---|
| 779 | if(iter != lossTableList.begin()) {
|
|---|
| 780 |
|
|---|
| 781 | // The energy loss is calculated using the ComputeDEDXPerVolume function
|
|---|
| 782 | // and the step length (it is assumed that dE/dx does not change
|
|---|
| 783 | // considerably along the step)
|
|---|
| 784 | eloss =
|
|---|
| 785 | length * ComputeDEDXPerVolume(material, particle,
|
|---|
| 786 | kineticEnergy, cutEnergy);
|
|---|
| 787 |
|
|---|
| 788 | #ifdef PRINT_DEBUG
|
|---|
| 789 | G4cout.precision(6);
|
|---|
| 790 | G4cout << "########################################################"
|
|---|
| 791 | << G4endl
|
|---|
| 792 | << "# G4IonParametrisedLossModel::CorrectionsAlongStep"
|
|---|
| 793 | << G4endl
|
|---|
| 794 | << "# cut(MeV) = " << cutEnergy/MeV
|
|---|
| 795 | << G4endl;
|
|---|
| 796 |
|
|---|
| 797 | G4cout << "#"
|
|---|
| 798 | << std::setw(13) << std::right << "E(MeV)"
|
|---|
| 799 | << std::setw(14) << "l(um)"
|
|---|
| 800 | << std::setw(14) << "l*dE/dx(MeV)"
|
|---|
| 801 | << std::setw(14) << "(l*dE/dx)/E"
|
|---|
| 802 | << G4endl
|
|---|
| 803 | << "# ------------------------------------------------------"
|
|---|
| 804 | << G4endl;
|
|---|
| 805 |
|
|---|
| 806 | G4cout << std::setw(14) << std::right << kineticEnergy / MeV
|
|---|
| 807 | << std::setw(14) << length / um
|
|---|
| 808 | << std::setw(14) << eloss / MeV
|
|---|
| 809 | << std::setw(14) << eloss / kineticEnergy * 100.0
|
|---|
| 810 | << G4endl;
|
|---|
| 811 | #endif
|
|---|
| 812 |
|
|---|
| 813 | // If the energy loss exceeds a certain fraction of the kinetic energy
|
|---|
| 814 | // (the fraction is indicated by the parameter "energyLossLimit") then
|
|---|
| 815 | // the range tables are used to derive a more accurate value of the
|
|---|
| 816 | // energy loss
|
|---|
| 817 | if(eloss > energyLossLimit * kineticEnergy) {
|
|---|
| 818 |
|
|---|
| 819 | eloss = ComputeLossForStep(material, particle,
|
|---|
| 820 | kineticEnergy, cutEnergy,length);
|
|---|
| 821 |
|
|---|
| 822 | #ifdef PRINT_DEBUG
|
|---|
| 823 | G4cout << "# Correction applied:"
|
|---|
| 824 | << G4endl;
|
|---|
| 825 |
|
|---|
| 826 | G4cout << std::setw(14) << std::right << kineticEnergy / MeV
|
|---|
| 827 | << std::setw(14) << length / um
|
|---|
| 828 | << std::setw(14) << eloss / MeV
|
|---|
| 829 | << std::setw(14) << eloss / kineticEnergy * 100.0
|
|---|
| 830 | << G4endl;
|
|---|
| 831 | #endif
|
|---|
| 832 |
|
|---|
| 833 | }
|
|---|
| 834 |
|
|---|
| 835 | }
|
|---|
| 836 |
|
|---|
| 837 | // For all corrections below a kinetic energy between the Pre- and
|
|---|
| 838 | // Post-step energy values is used
|
|---|
| 839 | G4double energy = kineticEnergy - eloss * 0.5;
|
|---|
| 840 | if(energy < 0.0) energy = kineticEnergy * 0.5;
|
|---|
| 841 |
|
|---|
| 842 | G4double chargeSquareRatio = corrections ->
|
|---|
| 843 | EffectiveChargeSquareRatio(particle,
|
|---|
| 844 | material,
|
|---|
| 845 | energy);
|
|---|
| 846 | GetModelOfFluctuations() -> SetParticleAndCharge(particle,
|
|---|
| 847 | chargeSquareRatio);
|
|---|
| 848 |
|
|---|
| 849 | // A correction is applied considering the change of the effective charge
|
|---|
| 850 | // along the step (the parameter "corrFactor" refers to the effective
|
|---|
| 851 | // charge at the beginning of the step). Note: the correction is not
|
|---|
| 852 | // applied for energy loss values deriving directly from parameterized
|
|---|
| 853 | // ion stopping power tables
|
|---|
| 854 | G4double transitionEnergy = dedxCacheTransitionEnergy;
|
|---|
| 855 |
|
|---|
| 856 | if(iter != lossTableList.begin() && transitionEnergy < kineticEnergy) {
|
|---|
| 857 | chargeSquareRatio *= corrections -> EffectiveChargeCorrection(particle,
|
|---|
| 858 | material,
|
|---|
| 859 | energy);
|
|---|
| 860 |
|
|---|
| 861 | G4double chargeSquareRatioCorr = chargeSquareRatio/corrFactor;
|
|---|
| 862 | eloss *= chargeSquareRatioCorr;
|
|---|
| 863 | }
|
|---|
| 864 | else if (iter == lossTableList.begin()) {
|
|---|
| 865 |
|
|---|
| 866 | chargeSquareRatio *= corrections -> EffectiveChargeCorrection(particle,
|
|---|
| 867 | material,
|
|---|
| 868 | energy);
|
|---|
| 869 |
|
|---|
| 870 | G4double chargeSquareRatioCorr = chargeSquareRatio/corrFactor;
|
|---|
| 871 | eloss *= chargeSquareRatioCorr;
|
|---|
| 872 | }
|
|---|
| 873 |
|
|---|
| 874 | // Ion high order corrections are applied if the current model does not
|
|---|
| 875 | // overwrite the energy loss (i.e. when the effective charge approach is
|
|---|
| 876 | // used)
|
|---|
| 877 | if(iter == lossTableList.begin()) {
|
|---|
| 878 |
|
|---|
| 879 | G4double scaledKineticEnergy = kineticEnergy * dedxCacheGenIonMassRatio;
|
|---|
| 880 | G4double lowEnergyLimit = betheBlochModel -> LowEnergyLimit();
|
|---|
| 881 |
|
|---|
| 882 | // Corrections are only applied in the Bethe-Bloch energy region
|
|---|
| 883 | if(scaledKineticEnergy > lowEnergyLimit)
|
|---|
| 884 | eloss += length *
|
|---|
| 885 | corrections -> IonHighOrderCorrections(particle, couple, energy);
|
|---|
| 886 | }
|
|---|
| 887 |
|
|---|
| 888 | // Nuclear stopping
|
|---|
| 889 | G4double scaledKineticEnergy = kineticEnergy * dedxCacheGenIonMassRatio;
|
|---|
| 890 | G4double charge = particle->GetPDGCharge()/eplus;
|
|---|
| 891 | G4double chargeSquare = charge * charge;
|
|---|
| 892 |
|
|---|
| 893 | if(nuclearStopping && scaledKineticEnergy < chargeSquare * 100.0 * MeV) {
|
|---|
| 894 |
|
|---|
| 895 | G4double nloss =
|
|---|
| 896 | length * corrections -> NuclearDEDX(particle, material, energy, false);
|
|---|
| 897 |
|
|---|
| 898 | if(eloss + nloss > kineticEnergy) {
|
|---|
| 899 |
|
|---|
| 900 | nloss *= (kineticEnergy / (eloss + nloss));
|
|---|
| 901 | eloss = kineticEnergy;
|
|---|
| 902 | } else {
|
|---|
| 903 | eloss += nloss;
|
|---|
| 904 | }
|
|---|
| 905 |
|
|---|
| 906 | particleChangeLoss -> ProposeNonIonizingEnergyDeposit(nloss);
|
|---|
| 907 | }
|
|---|
| 908 |
|
|---|
| 909 | }
|
|---|
| 910 |
|
|---|
| 911 |
|
|---|
| 912 | void G4IonParametrisedLossModel::BuildRangeVector(
|
|---|
| 913 | const G4ParticleDefinition* particle,
|
|---|
| 914 | const G4Material* material,
|
|---|
| 915 | G4double cutEnergy) {
|
|---|
| 916 |
|
|---|
| 917 | G4double massRatio = genericIonPDGMass / particle -> GetPDGMass();
|
|---|
| 918 |
|
|---|
| 919 | G4double lowerEnergy = lowerEnergyEdgeIntegr / massRatio;
|
|---|
| 920 | G4double upperEnergy = upperEnergyEdgeIntegr / massRatio;
|
|---|
| 921 |
|
|---|
| 922 | G4double logLowerEnergyEdge = std::log(lowerEnergy);
|
|---|
| 923 | G4double logUpperEnergyEdge = std::log(upperEnergy);
|
|---|
| 924 |
|
|---|
| 925 | G4double logDeltaEnergy = (logUpperEnergyEdge - logLowerEnergyEdge) /
|
|---|
| 926 | G4double(nmbBins);
|
|---|
| 927 |
|
|---|
| 928 | G4double logDeltaIntegr = logDeltaEnergy / G4double(nmbSubBins);
|
|---|
| 929 |
|
|---|
| 930 | G4LPhysicsFreeVector* energyRangeVector =
|
|---|
| 931 | new G4LPhysicsFreeVector(nmbBins+1,
|
|---|
| 932 | lowerEnergy,
|
|---|
| 933 | upperEnergy);
|
|---|
| 934 | energyRangeVector -> SetSpline(true);
|
|---|
| 935 |
|
|---|
| 936 | G4double dedxLow = ComputeDEDXPerVolume(material,
|
|---|
| 937 | particle,
|
|---|
| 938 | lowerEnergy,
|
|---|
| 939 | cutEnergy);
|
|---|
| 940 |
|
|---|
| 941 | G4double range = 2.0 * lowerEnergy / dedxLow;
|
|---|
| 942 |
|
|---|
| 943 | energyRangeVector -> PutValues(0, lowerEnergy, range);
|
|---|
| 944 |
|
|---|
| 945 | G4double logEnergy = std::log(lowerEnergy);
|
|---|
| 946 | for(size_t i = 1; i < nmbBins+1; i++) {
|
|---|
| 947 |
|
|---|
| 948 | G4double logEnergyIntegr = logEnergy;
|
|---|
| 949 |
|
|---|
| 950 | for(size_t j = 0; j < nmbSubBins; j++) {
|
|---|
| 951 |
|
|---|
| 952 | G4double binLowerBoundary = std::exp(logEnergyIntegr);
|
|---|
| 953 | logEnergyIntegr += logDeltaIntegr;
|
|---|
| 954 |
|
|---|
| 955 | G4double binUpperBoundary = std::exp(logEnergyIntegr);
|
|---|
| 956 | G4double deltaIntegr = binUpperBoundary - binLowerBoundary;
|
|---|
| 957 |
|
|---|
| 958 | G4double energyIntegr = binLowerBoundary + 0.5 * deltaIntegr;
|
|---|
| 959 |
|
|---|
| 960 | G4double dedxValue = ComputeDEDXPerVolume(material,
|
|---|
| 961 | particle,
|
|---|
| 962 | energyIntegr,
|
|---|
| 963 | cutEnergy);
|
|---|
| 964 |
|
|---|
| 965 | if(dedxValue > 0.0) range += deltaIntegr / dedxValue;
|
|---|
| 966 |
|
|---|
| 967 | #ifdef PRINT_DEBUG_DETAILS
|
|---|
| 968 | G4cout << " E = "<< energyIntegr/MeV
|
|---|
| 969 | << " MeV -> dE = " << deltaIntegr/MeV
|
|---|
| 970 | << " MeV -> dE/dx = " << dedxValue/MeV*mm
|
|---|
| 971 | << " MeV/mm -> dE/(dE/dx) = " << deltaIntegr /
|
|---|
| 972 | dedxValue / mm
|
|---|
| 973 | << " mm -> range = " << range / mm
|
|---|
| 974 | << " mm " << G4endl;
|
|---|
| 975 | #endif
|
|---|
| 976 | }
|
|---|
| 977 |
|
|---|
| 978 | logEnergy += logDeltaEnergy;
|
|---|
| 979 |
|
|---|
| 980 | G4double energy = std::exp(logEnergy);
|
|---|
| 981 |
|
|---|
| 982 | energyRangeVector -> PutValues(i, energy, range);
|
|---|
| 983 |
|
|---|
| 984 | #ifdef PRINT_DEBUG_DETAILS
|
|---|
| 985 | G4cout << "G4IonParametrisedLossModel::BuildRangeVector() bin = "
|
|---|
| 986 | << i <<", E = "
|
|---|
| 987 | << energy / MeV << " MeV, R = "
|
|---|
| 988 | << range / mm << " mm"
|
|---|
| 989 | << G4endl;
|
|---|
| 990 | #endif
|
|---|
| 991 |
|
|---|
| 992 | }
|
|---|
| 993 |
|
|---|
| 994 | G4bool b;
|
|---|
| 995 |
|
|---|
| 996 | G4double lowerRangeEdge =
|
|---|
| 997 | energyRangeVector -> GetValue(lowerEnergy, b);
|
|---|
| 998 | G4double upperRangeEdge =
|
|---|
| 999 | energyRangeVector -> GetValue(upperEnergy, b);
|
|---|
| 1000 |
|
|---|
| 1001 | G4LPhysicsFreeVector* rangeEnergyVector
|
|---|
| 1002 | = new G4LPhysicsFreeVector(nmbBins+1,
|
|---|
| 1003 | lowerRangeEdge,
|
|---|
| 1004 | upperRangeEdge);
|
|---|
| 1005 | rangeEnergyVector -> SetSpline(true);
|
|---|
| 1006 |
|
|---|
| 1007 | for(size_t i = 0; i < nmbBins+1; i++) {
|
|---|
| 1008 | G4double energy = energyRangeVector -> GetLowEdgeEnergy(i);
|
|---|
| 1009 | rangeEnergyVector ->
|
|---|
| 1010 | PutValues(i, energyRangeVector -> GetValue(energy, b), energy);
|
|---|
| 1011 | }
|
|---|
| 1012 |
|
|---|
| 1013 | #ifdef PRINT_DEBUG_TABLES
|
|---|
| 1014 | G4cout << *energyLossVector
|
|---|
| 1015 | << *energyRangeVector
|
|---|
| 1016 | << *rangeEnergyVector << G4endl;
|
|---|
| 1017 | #endif
|
|---|
| 1018 |
|
|---|
| 1019 | IonMatCouple ionMatCouple = std::make_pair(particle, material);
|
|---|
| 1020 |
|
|---|
| 1021 | E[ionMatCouple] = energyRangeVector;
|
|---|
| 1022 | r[ionMatCouple] = rangeEnergyVector;
|
|---|
| 1023 | }
|
|---|
| 1024 |
|
|---|
| 1025 |
|
|---|
| 1026 | G4double G4IonParametrisedLossModel::ComputeLossForStep(
|
|---|
| 1027 | const G4Material* material,
|
|---|
| 1028 | const G4ParticleDefinition* particle,
|
|---|
| 1029 | G4double kineticEnergy,
|
|---|
| 1030 | G4double cutEnergy,
|
|---|
| 1031 | G4double stepLength) {
|
|---|
| 1032 |
|
|---|
| 1033 | G4double loss = 0.0;
|
|---|
| 1034 |
|
|---|
| 1035 | UpdateDEDXCache(particle, material, cutEnergy);
|
|---|
| 1036 |
|
|---|
| 1037 | G4PhysicsVector* energyRange = dedxCacheEnergyRange;
|
|---|
| 1038 | G4PhysicsVector* rangeEnergy = dedxCacheRangeEnergy;
|
|---|
| 1039 |
|
|---|
| 1040 | if(energyRange != 0 && rangeEnergy != 0) {
|
|---|
| 1041 | G4bool b;
|
|---|
| 1042 |
|
|---|
| 1043 | // Computing range for pre-step kinetic energy:
|
|---|
| 1044 | G4double range = energyRange -> GetValue(kineticEnergy, b);
|
|---|
| 1045 |
|
|---|
| 1046 | #ifdef PRINT_DEBUG
|
|---|
| 1047 | G4cout << "G4IonParametrisedLossModel::ComputeLossForStep() range = "
|
|---|
| 1048 | << range / mm << " mm, step = " << stepLength / mm << " mm"
|
|---|
| 1049 | << G4endl;
|
|---|
| 1050 | #endif
|
|---|
| 1051 |
|
|---|
| 1052 | // If range is smaller than step length, the loss is set to kinetic
|
|---|
| 1053 | // energy
|
|---|
| 1054 | if(range <= stepLength) loss = kineticEnergy;
|
|---|
| 1055 | else {
|
|---|
| 1056 |
|
|---|
| 1057 | G4double energy = rangeEnergy -> GetValue(range - stepLength, b);
|
|---|
| 1058 |
|
|---|
| 1059 | loss = kineticEnergy - energy;
|
|---|
| 1060 |
|
|---|
| 1061 | if(loss < 0.0) loss = 0.0;
|
|---|
| 1062 | }
|
|---|
| 1063 |
|
|---|
| 1064 | #ifdef PRINT_DEBUG
|
|---|
| 1065 | G4cout << "G4IonParametrisedLossModel::ComputeLossForStep() E = "
|
|---|
| 1066 | << kineticEnergy / MeV << " MeV * "
|
|---|
| 1067 | << value.energyScaling << " = "
|
|---|
| 1068 | << kineticEnergy * value.energyScaling / MeV
|
|---|
| 1069 | << " MeV, dE/dx = " << dedx / MeV * cm << " MeV/cm = "
|
|---|
| 1070 | << dedx/factor/MeV*cm << " * " << factor << " MeV/cm; index = "
|
|---|
| 1071 | << value.dEdxIndex << ", material = " << material -> GetName()
|
|---|
| 1072 | << G4endl;
|
|---|
| 1073 | #endif
|
|---|
| 1074 |
|
|---|
| 1075 | }
|
|---|
| 1076 |
|
|---|
| 1077 | return loss;
|
|---|
| 1078 | }
|
|---|