source: trunk/source/processes/electromagnetic/lowenergy/src/G4LivermorePhotoElectricModel.cc @ 1340

Last change on this file since 1340 was 1340, checked in by garnier, 14 years ago

update ti head

File size: 12.6 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4LivermorePhotoElectricModel.cc,v 1.12 2010/10/13 07:15:42 pandola Exp $
27// GEANT4 tag $Name: emlowen-V09-03-54 $
28//
29//
30// Author: Sebastien Inserti
31//         30 October 2008
32//
33// History:
34// --------
35// 15 Apr 2009   V Ivanchenko Cleanup initialisation and generation of secondaries:
36//                  - apply internal high-energy limit only in constructor
37//                  - do not apply low-energy limit (default is 0)
38//                  - remove GetMeanFreePath method and table
39//                  - simplify sampling of deexcitation by using cut in energy
40//                  - added protection against numerical problem in energy sampling
41//                  - use G4ElementSelector
42// 23 Oct 2009   L Pandola
43//                  - atomic deexcitation managed via G4VEmModel::DeexcitationFlag() is
44//                    set as "true" (default would be false)
45// 15 Mar 2010   L Pandola
46//                  - removed methods to set explicitely fluorescence cuts.
47//                  Main cuts from G4ProductionCutsTable are always used
48//
49
50#include "G4LivermorePhotoElectricModel.hh"
51
52//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
53
54using namespace std;
55
56//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
57
58G4LivermorePhotoElectricModel::G4LivermorePhotoElectricModel(const G4ParticleDefinition*,
59                                             const G4String& nam)
60:G4VEmModel(nam),isInitialised(false),meanFreePathTable(0),
61 crossSectionHandler(0),shellCrossSectionHandler(0),ElectronAngularGenerator(0)
62{
63  lowEnergyLimit = 250 * eV; 
64  highEnergyLimit = 100 * GeV;
65  //  SetLowEnergyLimit(lowEnergyLimit);
66  SetHighEnergyLimit(highEnergyLimit);
67 
68  verboseLevel= 0;
69  // Verbosity scale:
70  // 0 = nothing
71  // 1 = warning for energy non-conservation
72  // 2 = details of energy budget
73  // 3 = calculation of cross sections, file openings, sampling of atoms
74  // 4 = entering in methods
75
76  //Set atomic deexcitation by default
77  SetDeexcitationFlag(true);
78  ActivateAuger(false);
79
80  if(verboseLevel>0) {
81    G4cout << "Livermore PhotoElectric is constructed " << G4endl
82           << "Energy range: "
83           << lowEnergyLimit / eV << " eV - "
84           << highEnergyLimit / GeV << " GeV"
85           << G4endl;
86  }
87}
88
89//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
90
91G4LivermorePhotoElectricModel::~G4LivermorePhotoElectricModel()
92{ 
93  if (crossSectionHandler) delete crossSectionHandler;
94  if (shellCrossSectionHandler) delete shellCrossSectionHandler;
95  if (ElectronAngularGenerator) delete ElectronAngularGenerator;
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
99
100void 
101G4LivermorePhotoElectricModel::Initialise(const G4ParticleDefinition*,
102                                          const G4DataVector&)
103{
104  if (verboseLevel > 3)
105    G4cout << "Calling G4LivermorePhotoElectricModel::Initialise()" << G4endl;
106
107  if (crossSectionHandler)
108  {
109    crossSectionHandler->Clear();
110    delete crossSectionHandler;
111  }
112 
113  if (shellCrossSectionHandler)
114  {
115    shellCrossSectionHandler->Clear();
116    delete shellCrossSectionHandler;
117  }
118 
119  // Read data tables for all materials
120 
121  crossSectionHandler = new G4CrossSectionHandler();
122  crossSectionHandler->Clear();
123  G4String crossSectionFile = "phot/pe-cs-";
124  crossSectionHandler->LoadData(crossSectionFile);
125
126  shellCrossSectionHandler = new G4CrossSectionHandler();
127  shellCrossSectionHandler->Clear();
128  G4String shellCrossSectionFile = "phot/pe-ss-cs-";
129  shellCrossSectionHandler->LoadShellData(shellCrossSectionFile);
130 
131  // default generator
132  ElectronAngularGenerator = 
133    new G4PhotoElectricAngularGeneratorSauterGavrila("GEANTSauterGavrilaGenerator");       
134
135  // 
136  if (verboseLevel > 2) 
137    G4cout << "Loaded cross section files for Livermore PhotoElectric model" << G4endl;
138
139  //  InitialiseElementSelectors(particle,cuts);
140
141  if (verboseLevel > 0) { 
142    G4cout << "Livermore PhotoElectric model is initialized " << G4endl
143           << "Energy range: "
144           << LowEnergyLimit() / eV << " eV - "
145           << HighEnergyLimit() / GeV << " GeV"
146           << G4endl;
147  }
148
149  if(isInitialised) return;
150  fParticleChange = GetParticleChangeForGamma();
151  isInitialised = true;
152}
153
154//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
155
156G4double G4LivermorePhotoElectricModel::ComputeCrossSectionPerAtom(
157                                       const G4ParticleDefinition*,
158                                             G4double GammaEnergy,
159                                             G4double Z, G4double,
160                                             G4double, G4double)
161{
162  if (verboseLevel > 3)
163    G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermorePhotoElectricModel" 
164           << G4endl;
165
166  if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit)
167    return 0;
168
169  G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
170  return cs;
171}
172
173//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
174
175void 
176G4LivermorePhotoElectricModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
177                                                 const G4MaterialCutsCouple* couple,
178                                                 const G4DynamicParticle* aDynamicGamma,
179                                                 G4double,
180                                                 G4double)
181{
182
183  // Fluorescence generated according to:
184  // J. Stepanek ,"A program to determine the radiation spectra due to a single atomic
185  // subshell ionisation by a particle or due to deexcitation or decay of radionuclides",
186  // Comp. Phys. Comm. 1206 pp 1-1-9 (1997)
187 
188  if (verboseLevel > 3)
189    G4cout << "Calling SampleSecondaries() of G4LivermorePhotoElectricModel" << G4endl;
190
191  G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
192 
193  // kill incident photon
194  fParticleChange->SetProposedKineticEnergy(0.);
195  fParticleChange->ProposeTrackStatus(fStopAndKill);   
196
197  // low-energy gamma is absorpted by this process
198  if (photonEnergy <= lowEnergyLimit)
199    {
200      fParticleChange->ProposeLocalEnergyDeposit(photonEnergy);
201      return;
202    }
203 
204  // Returns the normalized direction of the momentum
205  G4ThreeVector photonDirection = aDynamicGamma->GetMomentumDirection(); 
206
207  // Select randomly one element in the current material
208  //  G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy);
209  const G4ParticleDefinition* particle =  aDynamicGamma->GetDefinition();
210  const G4Element* elm = SelectRandomAtom(couple->GetMaterial(),particle,photonEnergy);
211  G4int Z = (G4int)elm->GetZ();
212
213  // Select the ionised shell in the current atom according to shell cross sections
214  size_t shellIndex = shellCrossSectionHandler->SelectRandomShell(Z,photonEnergy);
215
216  // Retrieve the corresponding identifier and binding energy of the selected shell
217  const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
218  const G4AtomicShell* shell = transitionManager->Shell(Z,shellIndex);
219  G4double bindingEnergy = shell->BindingEnergy();
220  G4int shellId = shell->ShellId();
221
222  // Primary outcoming electron
223  G4double eKineticEnergy = photonEnergy - bindingEnergy;
224
225  // There may be cases where the binding energy of the selected shell is > photon energy
226  // In such cases do not generate secondaries
227  if (eKineticEnergy > 0.)
228    {
229      // Calculate direction of the photoelectron
230      G4ThreeVector gammaPolarization = aDynamicGamma->GetPolarization();
231      G4ThreeVector electronDirection = 
232        ElectronAngularGenerator->GetPhotoElectronDirection(photonDirection,
233                                                            eKineticEnergy,
234                                                            gammaPolarization,
235                                                            shellId);
236
237      // The electron is created ...
238      G4DynamicParticle* electron = new G4DynamicParticle (G4Electron::Electron(),
239                                                           electronDirection,
240                                                           eKineticEnergy);
241      fvect->push_back(electron);
242    }
243  else
244    {
245      bindingEnergy = photonEnergy;
246    }
247
248  // deexcitation
249  if(DeexcitationFlag() && Z > 5) {
250
251    const G4ProductionCutsTable* theCoupleTable=
252      G4ProductionCutsTable::GetProductionCutsTable();
253
254    size_t index = couple->GetIndex();
255    G4double cutg = (*(theCoupleTable->GetEnergyCutsVector(0)))[index];
256    G4double cute = (*(theCoupleTable->GetEnergyCutsVector(1)))[index];
257
258    // Generation of fluorescence
259    // Data in EADL are available only for Z > 5
260    // Protection to avoid generating photons in the unphysical case of
261    // shell binding energy > photon energy
262    if (bindingEnergy > cutg || bindingEnergy > cute)
263      {
264        G4DynamicParticle* aPhoton;
265        deexcitationManager.SetCutForSecondaryPhotons(cutg);
266        deexcitationManager.SetCutForAugerElectrons(cute);
267 
268        std::vector<G4DynamicParticle*>* photonVector = 
269          deexcitationManager.GenerateParticles(Z,shellId);
270        size_t nTotPhotons = photonVector->size();
271        for (size_t k=0; k<nTotPhotons; k++)
272          {
273            aPhoton = (*photonVector)[k];
274            if (aPhoton)
275              {
276                G4double itsEnergy = aPhoton->GetKineticEnergy();
277                if (itsEnergy <= bindingEnergy)
278                  {
279                    // Local energy deposit is given as the sum of the
280                    // energies of incident photons minus the energies
281                    // of the outcoming fluorescence photons
282                    bindingEnergy -= itsEnergy;
283                    fvect->push_back(aPhoton);
284                  }
285                else
286                  {
287                    // abnormal case of energy non-conservation
288                    delete aPhoton;
289                    (*photonVector)[k] = 0;
290                  }
291              }
292          }
293        delete photonVector;
294      }
295  }
296  // excitation energy left
297  fParticleChange->ProposeLocalEnergyDeposit(bindingEnergy);
298}
299
300//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
301
302void G4LivermorePhotoElectricModel::ActivateAuger(G4bool augerbool)
303{
304  if (!DeexcitationFlag() && augerbool)
305    {
306      G4cout << "WARNING - G4LivermorePhotoElectricModel" << G4endl;
307      G4cout << "The use of the Atomic Deexcitation Manager is set to false " << G4endl;
308      G4cout << "Therefore, Auger electrons will be not generated anyway" << G4endl;
309    }
310  deexcitationManager.ActivateAugerElectronProduction(augerbool);
311  if (verboseLevel > 1)
312    G4cout << "Auger production set to " << augerbool << G4endl;
313}
314
315//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
316
317void 
318G4LivermorePhotoElectricModel::SetAngularGenerator(G4VPhotoElectricAngularDistribution* dist)
319{
320  ElectronAngularGenerator = dist;
321  ElectronAngularGenerator->PrintGeneratorInformation();
322}
323
324//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
325
326void G4LivermorePhotoElectricModel::SetAngularGenerator(const G4String& name)
327{
328  if (name == "default") 
329    {
330      delete ElectronAngularGenerator;
331      ElectronAngularGenerator = 
332        new G4PhotoElectricAngularGeneratorSimple("GEANT4LowEnergySimpleGenerator");
333      generatorName = name;
334    }
335  else if (name == "standard")
336    {
337      delete ElectronAngularGenerator;
338      ElectronAngularGenerator = 
339        new G4PhotoElectricAngularGeneratorSauterGavrila("GEANT4SauterGavrilaGenerator");
340      generatorName = name;
341    }
342  else if (name == "polarized")
343    {
344      delete ElectronAngularGenerator;
345      ElectronAngularGenerator = 
346        new G4PhotoElectricAngularGeneratorPolarized("GEANT4LowEnergyPolarizedGenerator");
347      generatorName = name;
348    }
349  else
350    {
351      G4Exception("G4LowEnergyPhotoElectric::SetAngularGenerator - generator does not exist");
352    }
353
354  ElectronAngularGenerator->PrintGeneratorInformation();
355}
356
Note: See TracBrowser for help on using the repository browser.