source: trunk/source/processes/electromagnetic/lowenergy/src/G4LivermoreRayleighModel.cc @ 1050

Last change on this file since 1050 was 1007, checked in by garnier, 15 years ago

update to geant4.9.2

File size: 8.5 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4LivermoreRayleighModel.cc,v 1.1 2008/10/30 14:16:35 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-02 $
28//
29
30#include "G4LivermoreRayleighModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4LivermoreRayleighModel::G4LivermoreRayleighModel(const G4ParticleDefinition*,
39                                             const G4String& nam)
40:G4VEmModel(nam),isInitialised(false)
41{
42  lowEnergyLimit = 250 * eV; // SI - Could be 10 eV ?
43  highEnergyLimit = 100 * GeV;
44 
45  SetLowEnergyLimit(lowEnergyLimit);
46  SetHighEnergyLimit(highEnergyLimit);
47  //
48  verboseLevel= 0;
49  // Verbosity scale:
50  // 0 = nothing
51  // 1 = warning for energy non-conservation
52  // 2 = details of energy budget
53  // 3 = calculation of cross sections, file openings, sampling of atoms
54  // 4 = entering in methods
55
56  G4cout << "Livermore Rayleigh is constructed " << G4endl
57         << "Energy range: "
58         << lowEnergyLimit / keV << " keV - "
59         << highEnergyLimit / GeV << " GeV"
60         << G4endl;
61}
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64
65G4LivermoreRayleighModel::~G4LivermoreRayleighModel()
66{ 
67  delete meanFreePathTable;
68  delete crossSectionHandler;
69  delete formFactorData;
70}
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
73
74void G4LivermoreRayleighModel::Initialise(const G4ParticleDefinition* particle,
75                                       const G4DataVector& cuts)
76{
77  if (verboseLevel > 3)
78    G4cout << "Calling G4LivermoreRayleighModel::Initialise()" << G4endl;
79
80  InitialiseElementSelectors(particle,cuts);
81
82  // Energy limits
83 
84  if (LowEnergyLimit() < lowEnergyLimit)
85  {
86    G4cout << "G4LivermoreRayleighModel: low energy limit increased from " << 
87        LowEnergyLimit()/eV << " eV to " << lowEnergyLimit << " eV" << G4endl;
88    SetLowEnergyLimit(lowEnergyLimit);
89  }
90
91  if (HighEnergyLimit() > highEnergyLimit)
92  {
93    G4cout << "G4LivermoreRayleighModel: high energy limit decreased from " << 
94        HighEnergyLimit()/GeV << " GeV to " << highEnergyLimit << " GeV" << G4endl;
95    SetHighEnergyLimit(highEnergyLimit);
96  }
97
98  // Data are read for all materials
99 
100  crossSectionHandler = new G4CrossSectionHandler;
101  crossSectionHandler->Clear();
102  G4String crossSectionFile = "rayl/re-cs-";
103  crossSectionHandler->LoadData(crossSectionFile);
104
105  meanFreePathTable = 0;
106  meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials();
107
108  G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation;
109  G4String formFactorFile = "rayl/re-ff-";
110  formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.);
111  formFactorData->LoadData(formFactorFile);
112
113  //
114 
115  if (verboseLevel > 2) 
116    G4cout << "Loaded cross section files for Livermore Rayleigh model" << G4endl;
117
118  G4cout << "Livermore Rayleigh model is initialized " << G4endl
119         << "Energy range: "
120         << LowEnergyLimit() / keV << " keV - "
121         << HighEnergyLimit() / GeV << " GeV"
122         << G4endl;
123
124  if(isInitialised) return;
125
126  if(pParticleChange)
127    fParticleChange = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
128  else
129    fParticleChange = new G4ParticleChangeForGamma();
130
131  isInitialised = true;
132
133}
134
135//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
136
137G4double G4LivermoreRayleighModel::ComputeCrossSectionPerAtom(
138                                       const G4ParticleDefinition*,
139                                             G4double GammaEnergy,
140                                             G4double Z, G4double,
141                                             G4double, G4double)
142{
143  if (verboseLevel > 3)
144    G4cout << "Calling CrossSectionPerAtom() of G4LivermoreRayleighModel" << G4endl;
145
146  G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
147  return cs;
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151
152void G4LivermoreRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
153                                              const G4MaterialCutsCouple* couple,
154                                              const G4DynamicParticle* aDynamicGamma,
155                                              G4double,
156                                              G4double)
157{
158  if (verboseLevel > 3)
159    G4cout << "Calling SampleSecondaries() of G4LivermoreRayleighModel" << G4endl;
160
161  G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
162 
163  if (photonEnergy0 <= lowEnergyLimit)
164  {
165      fParticleChange->ProposeTrackStatus(fStopAndKill);
166      fParticleChange->SetProposedKineticEnergy(0.);
167      fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
168      // SI - IS THE FOLLOWING RETURN NECESSARY ?
169      return ;
170  }
171
172  G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
173
174  // Select randomly one element in the current material
175  G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0);
176
177  // Sample the angle of the scattered photon
178
179  G4double wlPhoton = h_Planck*c_light/photonEnergy0;
180
181  G4double gReject,x,dataFormFactor;
182  G4double randomFormFactor;
183  G4double cosTheta;
184  G4double sinTheta;
185  G4double fcostheta;
186
187  do
188    {
189      do
190      {
191      cosTheta = 2. * G4UniformRand() - 1.;
192      fcostheta = ( 1. + cosTheta*cosTheta)/2.;
193      } while (fcostheta < G4UniformRand());
194
195      G4double sinThetaHalf = std::sqrt((1. - cosTheta) / 2.);
196      x = sinThetaHalf / (wlPhoton/cm);
197      if (x > 1.e+005)
198         dataFormFactor = formFactorData->FindValue(x,Z-1);
199      else
200         dataFormFactor = formFactorData->FindValue(0.,Z-1);
201      randomFormFactor = G4UniformRand() * Z * Z;
202      sinTheta = std::sqrt(1. - cosTheta*cosTheta);
203      gReject = dataFormFactor * dataFormFactor;
204
205    } while( gReject < randomFormFactor);
206
207  // Scattered photon angles. ( Z - axis along the parent photon)
208  G4double phi = twopi * G4UniformRand() ;
209  G4double dirX = sinTheta*std::cos(phi);
210  G4double dirY = sinTheta*std::sin(phi);
211  G4double dirZ = cosTheta;
212
213  // Update G4VParticleChange for the scattered photon
214  G4ThreeVector photonDirection1(dirX, dirY, dirZ);
215  photonDirection1.rotateUz(photonDirection0);
216  fParticleChange->ProposeMomentumDirection(photonDirection1);
217
218  fParticleChange->SetProposedKineticEnergy(photonEnergy0); 
219}
220
221//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
222
223G4double G4LivermoreRayleighModel::GetMeanFreePath(const G4Track& track, 
224                                              G4double, // previousStepSize
225                                              G4ForceCondition*)
226{
227  const G4DynamicParticle* photon = track.GetDynamicParticle();
228  G4double energy = photon->GetKineticEnergy();
229  const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple();
230  size_t materialIndex = couple->GetIndex();
231
232  G4double meanFreePath;
233  if (energy > highEnergyLimit) meanFreePath = meanFreePathTable->FindValue(highEnergyLimit,materialIndex);
234  else if (energy < lowEnergyLimit) meanFreePath = DBL_MAX;
235  else meanFreePath = meanFreePathTable->FindValue(energy,materialIndex);
236  return meanFreePath;
237}
238
Note: See TracBrowser for help on using the repository browser.