// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4LivermoreRayleighModel.cc,v 1.8 2009/09/23 16:54:06 flongo Exp $ // GEANT4 tag $Name: geant4-09-04-beta-cand-01 $ // // Author: Sebastien Inserti // 30 October 2008 // // History: // -------- // 18 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries: // - apply internal high-energy limit only in constructor // - do not apply low-energy limit (default is 0) // - remove GetMeanFreePath method and table // - remove initialisation of element selector // - use G4ElementSelector #include "G4LivermoreRayleighModel.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... using namespace std; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4LivermoreRayleighModel::G4LivermoreRayleighModel(const G4ParticleDefinition*, const G4String& nam) :G4VEmModel(nam),isInitialised(false),meanFreePathTable(0), formFactorData(0),crossSectionHandler(0) { lowEnergyLimit = 250 * eV; highEnergyLimit = 100 * GeV; // SetLowEnergyLimit(lowEnergyLimit); SetHighEnergyLimit(highEnergyLimit); // verboseLevel= 0; // Verbosity scale: // 0 = nothing // 1 = warning for energy non-conservation // 2 = details of energy budget // 3 = calculation of cross sections, file openings, sampling of atoms // 4 = entering in methods if(verboseLevel > 0) { G4cout << "Livermore Rayleigh is constructed " << G4endl << "Energy range: " << lowEnergyLimit / eV << " eV - " << highEnergyLimit / GeV << " GeV" << G4endl; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4LivermoreRayleighModel::~G4LivermoreRayleighModel() { if (crossSectionHandler) delete crossSectionHandler; if (formFactorData) delete formFactorData; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4LivermoreRayleighModel::Initialise(const G4ParticleDefinition* particle, const G4DataVector& cuts) { if (verboseLevel > 3) G4cout << "Calling G4LivermoreRayleighModel::Initialise()" << G4endl; if (crossSectionHandler) { crossSectionHandler->Clear(); delete crossSectionHandler; } // Data are read for all materials crossSectionHandler = new G4CrossSectionHandler; crossSectionHandler->Clear(); G4String crossSectionFile = "rayl/re-cs-"; crossSectionHandler->LoadData(crossSectionFile); G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation; G4String formFactorFile = "rayl/re-ff-"; formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.); formFactorData->LoadData(formFactorFile); InitialiseElementSelectors(particle,cuts); // if (verboseLevel > 2) G4cout << "Loaded cross section files for Livermore Rayleigh model" << G4endl; if (verboseLevel > 0) { G4cout << "Livermore Rayleigh model is initialized " << G4endl << "Energy range: " << LowEnergyLimit() / eV << " eV - " << HighEnergyLimit() / GeV << " GeV" << G4endl; } if(isInitialised) return; fParticleChange = GetParticleChangeForGamma(); isInitialised = true; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4LivermoreRayleighModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition*, G4double GammaEnergy, G4double Z, G4double, G4double, G4double) { if (verboseLevel > 3) G4cout << "Calling CrossSectionPerAtom() of G4LivermoreRayleighModel" << G4endl; if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0.0; G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy); return cs; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4LivermoreRayleighModel::SampleSecondaries(std::vector* /*fvect*/, const G4MaterialCutsCouple* couple, const G4DynamicParticle* aDynamicGamma, G4double, G4double) { if (verboseLevel > 3) G4cout << "Calling SampleSecondaries() of G4LivermoreRayleighModel" << G4endl; G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy(); // absorption of low-energy gamma if (photonEnergy0 <= lowEnergyLimit) { fParticleChange->ProposeTrackStatus(fStopAndKill); fParticleChange->SetProposedKineticEnergy(0.); fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); return ; } G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection(); // Select randomly one element in the current material // G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0); const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition(); const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0); G4int Z = (G4int)elm->GetZ(); // Sample the angle of the scattered photon G4double wlPhoton = h_Planck*c_light/photonEnergy0; G4double gReject,x,dataFormFactor; G4double randomFormFactor; G4double cosTheta; G4double sinTheta; G4double fcostheta; do { do { cosTheta = 2. * G4UniformRand() - 1.; fcostheta = ( 1. + cosTheta*cosTheta)/2.; } while (fcostheta < G4UniformRand()); if (photonEnergy0 > 5) { cosTheta = 1.; } G4double sinThetaHalf = std::sqrt((1. - cosTheta) / 2.); x = sinThetaHalf / (wlPhoton/cm); if (x > 1.e+005) { dataFormFactor = formFactorData->FindValue(x,Z-1); } else { dataFormFactor = formFactorData->FindValue(0.,Z-1); } randomFormFactor = G4UniformRand() * Z * Z; sinTheta = std::sqrt(1. - cosTheta*cosTheta); gReject = dataFormFactor * dataFormFactor; } while( gReject < randomFormFactor); // Scattered photon angles. ( Z - axis along the parent photon) G4double phi = twopi * G4UniformRand() ; G4double dirX = sinTheta*std::cos(phi); G4double dirY = sinTheta*std::sin(phi); G4double dirZ = cosTheta; // Update G4VParticleChange for the scattered photon G4ThreeVector photonDirection1(dirX, dirY, dirZ); photonDirection1.rotateUz(photonDirection0); fParticleChange->ProposeMomentumDirection(photonDirection1); fParticleChange->SetProposedKineticEnergy(photonEnergy0); }