source: trunk/source/processes/electromagnetic/lowenergy/src/G4LivermoreRayleighModel.cc @ 989

Last change on this file since 989 was 968, checked in by garnier, 15 years ago

fichier ajoutes

File size: 8.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4LivermoreRayleighModel.cc,v 1.2 2009/01/21 10:58:13 sincerti Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28//
29
30#include "G4LivermoreRayleighModel.hh"
31
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
33
34using namespace std;
35
36//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
37
38G4LivermoreRayleighModel::G4LivermoreRayleighModel(const G4ParticleDefinition*,
39                                             const G4String& nam)
40:G4VEmModel(nam),isInitialised(false),meanFreePathTable(0),formFactorData(0),crossSectionHandler(0)
41{
42  lowEnergyLimit = 250 * eV; // SI - Could be 10 eV ?
43  highEnergyLimit = 100 * GeV;
44 
45  SetLowEnergyLimit(lowEnergyLimit);
46  SetHighEnergyLimit(highEnergyLimit);
47  //
48  verboseLevel= 0;
49  // Verbosity scale:
50  // 0 = nothing
51  // 1 = warning for energy non-conservation
52  // 2 = details of energy budget
53  // 3 = calculation of cross sections, file openings, sampling of atoms
54  // 4 = entering in methods
55
56  G4cout << "Livermore Rayleigh is constructed " << G4endl
57         << "Energy range: "
58         << lowEnergyLimit / keV << " keV - "
59         << highEnergyLimit / GeV << " GeV"
60         << G4endl;
61}
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64
65G4LivermoreRayleighModel::~G4LivermoreRayleighModel()
66{ 
67  if (meanFreePathTable) delete meanFreePathTable;
68  if (crossSectionHandler) delete crossSectionHandler;
69  if (formFactorData) delete formFactorData;
70}
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
73
74void G4LivermoreRayleighModel::Initialise(const G4ParticleDefinition* particle,
75                                       const G4DataVector& cuts)
76{
77  if (verboseLevel > 3)
78    G4cout << "Calling G4LivermoreRayleighModel::Initialise()" << G4endl;
79
80  if (crossSectionHandler)
81  {
82    crossSectionHandler->Clear();
83    delete crossSectionHandler;
84  }
85 
86  // Energy limits
87 
88  if (LowEnergyLimit() < lowEnergyLimit)
89  {
90    G4cout << "G4LivermoreRayleighModel: low energy limit increased from " << 
91        LowEnergyLimit()/eV << " eV to " << lowEnergyLimit << " eV" << G4endl;
92    SetLowEnergyLimit(lowEnergyLimit);
93  }
94
95  if (HighEnergyLimit() > highEnergyLimit)
96  {
97    G4cout << "G4LivermoreRayleighModel: high energy limit decreased from " << 
98        HighEnergyLimit()/GeV << " GeV to " << highEnergyLimit << " GeV" << G4endl;
99    SetHighEnergyLimit(highEnergyLimit);
100  }
101
102  // Data are read for all materials
103 
104  crossSectionHandler = new G4CrossSectionHandler;
105  crossSectionHandler->Clear();
106  G4String crossSectionFile = "rayl/re-cs-";
107  crossSectionHandler->LoadData(crossSectionFile);
108
109  meanFreePathTable = 0;
110  meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials();
111
112  G4VDataSetAlgorithm* ffInterpolation = new G4LogLogInterpolation;
113  G4String formFactorFile = "rayl/re-ff-";
114  formFactorData = new G4CompositeEMDataSet(ffInterpolation,1.,1.);
115  formFactorData->LoadData(formFactorFile);
116
117  //
118 
119  if (verboseLevel > 2) 
120    G4cout << "Loaded cross section files for Livermore Rayleigh model" << G4endl;
121
122  InitialiseElementSelectors(particle,cuts);
123
124  G4cout << "Livermore Rayleigh model is initialized " << G4endl
125         << "Energy range: "
126         << LowEnergyLimit() / keV << " keV - "
127         << HighEnergyLimit() / GeV << " GeV"
128         << G4endl;
129
130  if(isInitialised) return;
131
132  if(pParticleChange)
133    fParticleChange = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
134  else
135    fParticleChange = new G4ParticleChangeForGamma();
136
137  isInitialised = true;
138
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
143G4double G4LivermoreRayleighModel::ComputeCrossSectionPerAtom(
144                                       const G4ParticleDefinition*,
145                                             G4double GammaEnergy,
146                                             G4double Z, G4double,
147                                             G4double, G4double)
148{
149  if (verboseLevel > 3)
150    G4cout << "Calling CrossSectionPerAtom() of G4LivermoreRayleighModel" << G4endl;
151
152  G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
153  return cs;
154}
155
156//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
157
158void G4LivermoreRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
159                                              const G4MaterialCutsCouple* couple,
160                                              const G4DynamicParticle* aDynamicGamma,
161                                              G4double,
162                                              G4double)
163{
164  if (verboseLevel > 3)
165    G4cout << "Calling SampleSecondaries() of G4LivermoreRayleighModel" << G4endl;
166
167  G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
168 
169  if (photonEnergy0 <= lowEnergyLimit)
170  {
171      fParticleChange->ProposeTrackStatus(fStopAndKill);
172      fParticleChange->SetProposedKineticEnergy(0.);
173      fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0);
174      return ;
175  }
176
177  G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
178
179  // Select randomly one element in the current material
180  G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy0);
181
182  // Sample the angle of the scattered photon
183
184  G4double wlPhoton = h_Planck*c_light/photonEnergy0;
185
186  G4double gReject,x,dataFormFactor;
187  G4double randomFormFactor;
188  G4double cosTheta;
189  G4double sinTheta;
190  G4double fcostheta;
191
192  do
193    {
194      do
195      {
196      cosTheta = 2. * G4UniformRand() - 1.;
197      fcostheta = ( 1. + cosTheta*cosTheta)/2.;
198      } while (fcostheta < G4UniformRand());
199
200      G4double sinThetaHalf = std::sqrt((1. - cosTheta) / 2.);
201      x = sinThetaHalf / (wlPhoton/cm);
202      if (x > 1.e+005)
203         dataFormFactor = formFactorData->FindValue(x,Z-1);
204      else
205         dataFormFactor = formFactorData->FindValue(0.,Z-1);
206      randomFormFactor = G4UniformRand() * Z * Z;
207      sinTheta = std::sqrt(1. - cosTheta*cosTheta);
208      gReject = dataFormFactor * dataFormFactor;
209
210    } while( gReject < randomFormFactor);
211
212  // Scattered photon angles. ( Z - axis along the parent photon)
213  G4double phi = twopi * G4UniformRand() ;
214  G4double dirX = sinTheta*std::cos(phi);
215  G4double dirY = sinTheta*std::sin(phi);
216  G4double dirZ = cosTheta;
217
218  // Update G4VParticleChange for the scattered photon
219  G4ThreeVector photonDirection1(dirX, dirY, dirZ);
220  photonDirection1.rotateUz(photonDirection0);
221  fParticleChange->ProposeMomentumDirection(photonDirection1);
222
223  fParticleChange->SetProposedKineticEnergy(photonEnergy0); 
224}
225
226//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
227
228G4double G4LivermoreRayleighModel::GetMeanFreePath(const G4Track& track, 
229                                              G4double, // previousStepSize
230                                              G4ForceCondition*)
231{
232  const G4DynamicParticle* photon = track.GetDynamicParticle();
233  G4double energy = photon->GetKineticEnergy();
234  const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple();
235  size_t materialIndex = couple->GetIndex();
236
237  G4double meanFreePath;
238  if (energy > highEnergyLimit) meanFreePath = meanFreePathTable->FindValue(highEnergyLimit,materialIndex);
239  else if (energy < lowEnergyLimit) meanFreePath = DBL_MAX;
240  else meanFreePath = meanFreePathTable->FindValue(energy,materialIndex);
241  return meanFreePath;
242}
243
Note: See TracBrowser for help on using the repository browser.