source: trunk/source/processes/electromagnetic/lowenergy/src/G4LowEnergyGammaConversion.cc @ 991

Last change on this file since 991 was 991, checked in by garnier, 15 years ago

update

File size: 12.6 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// --------------------------------------------------------------------
27///
28// $Id: G4LowEnergyGammaConversion.cc,v 1.36 2006/06/29 19:40:17 gunter Exp $
29// GEANT4 tag $Name: geant4-09-02 $
30//
31//
32// --------------------------------------------------------------
33//
34// Author: A. Forti
35//         Maria Grazia Pia (Maria.Grazia.Pia@cern.ch)
36//
37// History:
38// --------
39// 02/03/1999 A. Forti 1st implementation
40// 14.03.2000 Veronique Lefebure;
41// Change initialisation of lowestEnergyLimit from 1.22 to 1.022.
42// Note that the hard coded value 1.022 should be used instead of
43// 2*electron_mass_c2 in order to agree with the value of the data bank EPDL97
44// 24.04.01 V.Ivanchenko remove RogueWave
45// 27.07.01 F.Longo correct bug in energy distribution
46// 21.01.03 V.Ivanchenko Cut per region
47// 25.03.03 F.Longo fix in angular distribution of e+/e-
48// 24.04.03 V.Ivanchenko - Cut per region mfpt
49//
50// --------------------------------------------------------------
51
52#include "G4LowEnergyGammaConversion.hh"
53
54#include "Randomize.hh"
55#include "G4ParticleDefinition.hh"
56#include "G4Track.hh"
57#include "G4Step.hh"
58#include "G4ForceCondition.hh"
59#include "G4Gamma.hh"
60#include "G4Electron.hh"
61#include "G4DynamicParticle.hh"
62#include "G4VParticleChange.hh"
63#include "G4ThreeVector.hh"
64#include "G4Positron.hh"
65#include "G4IonisParamElm.hh"
66#include "G4Material.hh"
67#include "G4VCrossSectionHandler.hh"
68#include "G4CrossSectionHandler.hh"
69#include "G4VEMDataSet.hh"
70#include "G4VDataSetAlgorithm.hh"
71#include "G4LogLogInterpolation.hh"
72#include "G4VRangeTest.hh"
73#include "G4RangeTest.hh"
74#include "G4MaterialCutsCouple.hh"
75
76G4LowEnergyGammaConversion::G4LowEnergyGammaConversion(const G4String& processName)
77  : G4VDiscreteProcess(processName),
78    lowEnergyLimit(1.022000*MeV),
79    highEnergyLimit(100*GeV),
80    intrinsicLowEnergyLimit(1.022000*MeV),
81    intrinsicHighEnergyLimit(100*GeV),
82    smallEnergy(2.*MeV)
83
84{
85  if (lowEnergyLimit < intrinsicLowEnergyLimit || 
86      highEnergyLimit > intrinsicHighEnergyLimit)
87    {
88      G4Exception("G4LowEnergyGammaConversion::G4LowEnergyGammaConversion - energy limit outside intrinsic process validity range");
89    }
90
91  // The following pointer is owned by G4DataHandler
92 
93  crossSectionHandler = new G4CrossSectionHandler();
94  crossSectionHandler->Initialise(0,1.0220*MeV,100.*GeV,400);
95  meanFreePathTable = 0;
96  rangeTest = new G4RangeTest;
97
98   if (verboseLevel > 0) 
99     {
100       G4cout << GetProcessName() << " is created " << G4endl
101              << "Energy range: " 
102              << lowEnergyLimit / MeV << " MeV - "
103              << highEnergyLimit / GeV << " GeV" 
104              << G4endl;
105     }
106}
107 
108G4LowEnergyGammaConversion::~G4LowEnergyGammaConversion()
109{
110  delete meanFreePathTable;
111  delete crossSectionHandler;
112  delete rangeTest;
113}
114
115void G4LowEnergyGammaConversion::BuildPhysicsTable(const G4ParticleDefinition& )
116{
117
118  crossSectionHandler->Clear();
119  G4String crossSectionFile = "pair/pp-cs-";
120  crossSectionHandler->LoadData(crossSectionFile);
121
122  delete meanFreePathTable;
123  meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials();
124}
125
126G4VParticleChange* G4LowEnergyGammaConversion::PostStepDoIt(const G4Track& aTrack,
127                                                            const G4Step& aStep)
128{
129// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
130// cross sections with Coulomb correction. A modified version of the random
131// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
132
133// Note 1 : Effects due to the breakdown of the Born approximation at low
134// energy are ignored.
135// Note 2 : The differential cross section implicitly takes account of
136// pair creation in both nuclear and atomic electron fields. However triplet
137// prodution is not generated.
138
139  aParticleChange.Initialize(aTrack);
140
141  const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple();
142
143  const G4DynamicParticle* incidentPhoton = aTrack.GetDynamicParticle();
144  G4double photonEnergy = incidentPhoton->GetKineticEnergy();
145  G4ParticleMomentum photonDirection = incidentPhoton->GetMomentumDirection();
146
147  G4double epsilon ;
148  G4double epsilon0 = electron_mass_c2 / photonEnergy ;
149
150  // Do it fast if photon energy < 2. MeV
151  if (photonEnergy < smallEnergy )
152    {
153      epsilon = epsilon0 + (0.5 - epsilon0) * G4UniformRand();
154    }
155  else
156    {
157      // Select randomly one element in the current material
158      const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
159
160      if (element == 0)
161        {
162          G4cout << "G4LowEnergyGammaConversion::PostStepDoIt - element = 0" << G4endl;
163        }
164      G4IonisParamElm* ionisation = element->GetIonisation();
165       if (ionisation == 0)
166        {
167          G4cout << "G4LowEnergyGammaConversion::PostStepDoIt - ionisation = 0" << G4endl;
168        }
169
170      // Extract Coulomb factor for this Element
171      G4double fZ = 8. * (ionisation->GetlogZ3());
172      if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
173
174      // Limits of the screening variable
175      G4double screenFactor = 136. * epsilon0 / (element->GetIonisation()->GetZ3()) ;
176      G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
177      G4double screenMin = std::min(4.*screenFactor,screenMax) ;
178
179      // Limits of the energy sampling
180      G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
181      G4double epsilonMin = std::max(epsilon0,epsilon1);
182      G4double epsilonRange = 0.5 - epsilonMin ;
183
184      // Sample the energy rate of the created electron (or positron)
185      G4double screen;
186      G4double gReject ;
187
188      G4double f10 = ScreenFunction1(screenMin) - fZ;
189      G4double f20 = ScreenFunction2(screenMin) - fZ;
190      G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
191      G4double normF2 = std::max(1.5 * f20,0.);
192
193      do {
194        if (normF1 / (normF1 + normF2) > G4UniformRand() )
195          {
196            epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
197            screen = screenFactor / (epsilon * (1. - epsilon));
198            gReject = (ScreenFunction1(screen) - fZ) / f10 ;
199          }
200        else
201          {
202            epsilon = epsilonMin + epsilonRange * G4UniformRand();
203            screen = screenFactor / (epsilon * (1 - epsilon));
204            gReject = (ScreenFunction2(screen) - fZ) / f20 ;
205          }
206      } while ( gReject < G4UniformRand() );
207
208    }   //  End of epsilon sampling
209
210  // Fix charges randomly
211
212  G4double electronTotEnergy;
213  G4double positronTotEnergy;
214
215  if (CLHEP::RandBit::shootBit())
216    {
217      electronTotEnergy = (1. - epsilon) * photonEnergy;
218      positronTotEnergy = epsilon * photonEnergy;
219    }
220  else
221    {
222      positronTotEnergy = (1. - epsilon) * photonEnergy;
223      electronTotEnergy = epsilon * photonEnergy;
224    }
225
226  // Scattered electron (positron) angles. ( Z - axis along the parent photon)
227  // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
228  // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
229
230  G4double u;
231  const G4double a1 = 0.625;
232  G4double a2 = 3. * a1;
233  //  G4double d = 27. ;
234
235  //  if (9. / (9. + d) > G4UniformRand())
236  if (0.25 > G4UniformRand())
237    {
238      u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
239    }
240  else
241    {
242      u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
243    }
244
245  G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
246  G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
247  G4double phi  = twopi * G4UniformRand();
248
249  G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
250  G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
251 
252 
253  // Kinematics of the created pair:
254  // the electron and positron are assumed to have a symetric angular
255  // distribution with respect to the Z axis along the parent photon
256 
257  G4double localEnergyDeposit = 0. ;
258 
259  aParticleChange.SetNumberOfSecondaries(2) ; 
260  G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
261 
262  // Generate the electron only if with large enough range w.r.t. cuts and safety
263 
264  G4double safety = aStep.GetPostStepPoint()->GetSafety();
265 
266  if (rangeTest->Escape(G4Electron::Electron(),couple,electronKineEnergy,safety))
267    {
268      G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
269      electronDirection.rotateUz(photonDirection);
270     
271      G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(),
272                                                            electronDirection,
273                                                            electronKineEnergy);
274      aParticleChange.AddSecondary(particle1) ;
275    }
276  else
277    {
278      localEnergyDeposit += electronKineEnergy ;
279    }
280
281  // The e+ is always created (even with kinetic energy = 0) for further annihilation
282  G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
283
284  // Is the local energy deposit correct, if the positron is always created?
285  if (! (rangeTest->Escape(G4Positron::Positron(),couple,positronKineEnergy,safety)))
286    {
287      localEnergyDeposit += positronKineEnergy ;
288      positronKineEnergy = 0. ;
289    }
290
291  G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
292  positronDirection.rotateUz(photonDirection);   
293 
294  // Create G4DynamicParticle object for the particle2
295  G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(),
296                                                       positronDirection, positronKineEnergy);
297  aParticleChange.AddSecondary(particle2) ; 
298
299  aParticleChange.ProposeLocalEnergyDeposit(localEnergyDeposit) ;
300 
301  // Kill the incident photon
302  aParticleChange.ProposeMomentumDirection(0.,0.,0.) ;
303  aParticleChange.ProposeEnergy(0.) ; 
304  aParticleChange.ProposeTrackStatus(fStopAndKill) ;
305
306  //  Reset NbOfInteractionLengthLeft and return aParticleChange
307  return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
308}
309
310G4bool G4LowEnergyGammaConversion::IsApplicable(const G4ParticleDefinition& particle)
311{
312  return ( &particle == G4Gamma::Gamma() ); 
313}
314
315G4double G4LowEnergyGammaConversion::GetMeanFreePath(const G4Track& track, 
316                                                     G4double, // previousStepSize
317                                                     G4ForceCondition*)
318{
319  const G4DynamicParticle* photon = track.GetDynamicParticle();
320  G4double energy = photon->GetKineticEnergy();
321  const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple();
322  size_t materialIndex = couple->GetIndex();
323
324  G4double meanFreePath;
325  if (energy > highEnergyLimit) meanFreePath = meanFreePathTable->FindValue(highEnergyLimit,materialIndex);
326  else if (energy < lowEnergyLimit) meanFreePath = DBL_MAX;
327  else meanFreePath = meanFreePathTable->FindValue(energy,materialIndex);
328  return meanFreePath;
329}
330
331G4double G4LowEnergyGammaConversion::ScreenFunction1(G4double screenVariable)
332{
333  // Compute the value of the screening function 3*phi1 - phi2
334
335  G4double value;
336 
337  if (screenVariable > 1.)
338    value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
339  else
340    value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
341 
342  return value;
343} 
344
345G4double G4LowEnergyGammaConversion::ScreenFunction2(G4double screenVariable)
346{
347  // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
348 
349  G4double value;
350 
351  if (screenVariable > 1.)
352    value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
353  else
354    value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
355 
356  return value;
357} 
Note: See TracBrowser for help on using the repository browser.