source: trunk/source/processes/electromagnetic/lowenergy/src/G4LowEnergyIonisation.cc @ 1347

Last change on this file since 1347 was 1347, checked in by garnier, 13 years ago

geant4 tag 9.4

File size: 24.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4LowEnergyIonisation.cc,v 1.106 2009/06/11 15:47:08 mantero Exp $
27// GEANT4 tag $Name: geant4-09-04-ref-00 $
28//
29// --------------------------------------------------------------
30//
31// File name:     G4LowEnergyIonisation
32//
33// Author:        Alessandra Forti, Vladimir Ivanchenko
34//
35// Creation date: March 1999
36//
37// Modifications:
38// - 11.04.2000 VL
39//   Changing use of float and G4float casts to G4double casts
40//   because of problems with optimisation (bug ?)
41//   10.04.2000 VL
42// - Correcting Fluorescence transition probabilities in order to take into account
43//   non-radiative transitions. No Auger electron simulated yet: energy is locally deposited.
44//   10.04.2000 VL
45// - Correction of incident electron final momentum direction
46//   07.04.2000 VL+LU
47// - First implementation of continuous energy loss
48//   22.03.2000 VL
49// - 1 bug corrected in SelectRandomAtom method (units)
50//   17.02.2000 Veronique Lefebure
51// - 5 bugs corrected:
52//   *in Fluorescence, 2 bugs affecting
53//   . localEnergyDeposition and
54//   . number of emitted photons that was then always 1 less
55//   *in EnergySampling method:
56//   . expon = Parms[13]+1; (instead of uncorrect -1)
57//   . rejection /= Parms[6];(instead of uncorrect Parms[7])
58//   . Parms[6] is apparently corrupted in the data file (often = 0) 
59//     -->Compute normalisation into local variable rejectionMax
60//     and use rejectionMax  in stead of Parms[6]
61//
62// Added Livermore data table construction methods A. Forti
63// Modified BuildMeanFreePath to read new data tables A. Forti
64// Added EnergySampling method A. Forti
65// Modified PostStepDoIt to insert sampling with EEDL data A. Forti
66// Added SelectRandomAtom A. Forti
67// Added map of the elements A. Forti
68// 20.09.00 V.Ivanchenko update fluctuations
69// 24.04.01 V.Ivanchenko remove RogueWave
70// 22.05.01 V.Ivanchenko update calculation of delta-ray kinematic +
71//                       clean up the code
72// 02.08.01 V.Ivanchenko fix energy conservation for small steps
73// 18.08.01 V.Ivanchenko fix energy conservation for pathalogical delta-energy
74// 01.10.01 E. Guardincerri Replaced fluorescence generation in PostStepDoIt
75//                          according to design iteration
76// 04.10.01 MGP             Minor clean-up in the fluo section, removal of
77//                          compilation warnings and extra protection to
78//                          prevent from accessing a null pointer       
79// 29.09.01 V.Ivanchenko    revision based on design iteration
80// 10.10.01 MGP             Revision to improve code quality and
81//                          consistency with design
82// 18.10.01 V.Ivanchenko    Add fluorescence AlongStepDoIt
83// 18.10.01 MGP             Revision to improve code quality and
84//                          consistency with design
85// 19.10.01 V.Ivanchenko    update according to new design, V.Ivanchenko
86// 26.10.01 V.Ivanchenko    clean up deexcitation
87// 28.10.01 V.Ivanchenko    update printout
88// 29.11.01 V.Ivanchenko    New parametrisation introduced
89// 25.03.02 V.Ivanchneko    Fix in fluorescence
90// 28.03.02 V.Ivanchenko    Add flag of fluorescence
91// 28.05.02 V.Ivanchenko    Remove flag fStopAndKill
92// 31.05.02 V.Ivanchenko    Add path of Fluo + Auger cuts to
93//                          AtomicDeexcitation
94// 03.06.02 MGP             Restore fStopAndKill
95// 19.06.02 VI              Additional printout
96// 30.07.02 VI              Fix in restricted energy loss
97// 20.09.02 VI              Remove ActivateFlurescence from SetCut...
98// 21.01.03 VI              Cut per region
99// 12.02.03 VI              Change signature for Deexcitation
100// 12.04.03 V.Ivanchenko    Cut per region for fluo AlongStep
101// 31.08.04 V.Ivanchenko    Add density correction
102//
103// --------------------------------------------------------------
104
105#include "G4LowEnergyIonisation.hh"
106#include "G4eIonisationSpectrum.hh"
107#include "G4eIonisationCrossSectionHandler.hh"
108#include "G4AtomicTransitionManager.hh"
109#include "G4AtomicShell.hh"
110#include "G4VDataSetAlgorithm.hh"
111#include "G4SemiLogInterpolation.hh"
112#include "G4LogLogInterpolation.hh"
113#include "G4EMDataSet.hh"
114#include "G4VEMDataSet.hh"
115#include "G4CompositeEMDataSet.hh"
116#include "G4EnergyLossTables.hh"
117#include "G4ShellVacancy.hh"
118#include "G4UnitsTable.hh"
119#include "G4Electron.hh"
120#include "G4Gamma.hh"
121#include "G4ProductionCutsTable.hh"
122
123G4LowEnergyIonisation::G4LowEnergyIonisation(const G4String& nam)
124  : G4eLowEnergyLoss(nam), 
125  crossSectionHandler(0),
126  theMeanFreePath(0),
127  energySpectrum(0),
128  shellVacancy(0)
129{
130  cutForPhotons = 250.0*eV;
131  cutForElectrons = 250.0*eV;
132  verboseLevel = 0;
133
134   G4cout << G4endl;
135   G4cout << "*******************************************************************************" << G4endl;
136   G4cout << "*******************************************************************************" << G4endl;
137   G4cout << "   The class G4LowEnergyIonisation is NOT SUPPORTED ANYMORE. " << G4endl;
138   G4cout << "   It will be REMOVED with the next major release of Geant4. " << G4endl;
139   G4cout << "   Please consult: https://twiki.cern.ch/twiki/bin/view/Geant4/LoweProcesses" << G4endl;
140   G4cout << "*******************************************************************************" << G4endl;
141   G4cout << "*******************************************************************************" << G4endl;
142   G4cout << G4endl;
143}
144
145
146G4LowEnergyIonisation::~G4LowEnergyIonisation()
147{
148  delete crossSectionHandler;
149  delete energySpectrum;
150  delete theMeanFreePath;
151  delete shellVacancy;
152}
153
154
155void G4LowEnergyIonisation::BuildPhysicsTable(const G4ParticleDefinition& aParticleType)
156{
157  if(verboseLevel > 0) {
158    G4cout << "G4LowEnergyIonisation::BuildPhysicsTable start"
159           << G4endl;
160      }
161
162  cutForDelta.clear();
163
164  // Create and fill IonisationParameters once
165  if( energySpectrum != 0 ) delete energySpectrum;
166  energySpectrum = new G4eIonisationSpectrum();
167
168  if(verboseLevel > 0) {
169    G4cout << "G4VEnergySpectrum is initialized"
170           << G4endl;
171      }
172
173  // Create and fill G4CrossSectionHandler once
174
175  if ( crossSectionHandler != 0 ) delete crossSectionHandler;
176  G4VDataSetAlgorithm* interpolation = new G4SemiLogInterpolation();
177  G4double lowKineticEnergy  = GetLowerBoundEloss();
178  G4double highKineticEnergy = GetUpperBoundEloss();
179  G4int    totBin = GetNbinEloss();
180  crossSectionHandler = new G4eIonisationCrossSectionHandler(energySpectrum,
181                                                             interpolation,
182                                                             lowKineticEnergy,
183                                                             highKineticEnergy,
184                                                             totBin);
185  crossSectionHandler->LoadShellData("ioni/ion-ss-cs-");
186
187  if (verboseLevel > 0) {
188    G4cout << GetProcessName()
189           << " is created; Cross section data: "
190           << G4endl;
191    crossSectionHandler->PrintData();
192    G4cout << "Parameters: "
193           << G4endl;
194    energySpectrum->PrintData();
195  }
196
197  // Build loss table for IonisationIV
198
199  BuildLossTable(aParticleType);
200
201  if(verboseLevel > 0) {
202    G4cout << "The loss table is built"
203           << G4endl;
204      }
205
206  if (&aParticleType==G4Electron::Electron()) {
207
208    RecorderOfElectronProcess[CounterOfElectronProcess] = (*this).theLossTable;
209    CounterOfElectronProcess++;
210    PrintInfoDefinition(); 
211
212  } else {
213
214    RecorderOfPositronProcess[CounterOfPositronProcess] = (*this).theLossTable;
215    CounterOfPositronProcess++;
216  }
217
218  // Build mean free path data using cut values
219
220  if( theMeanFreePath ) delete theMeanFreePath;
221  theMeanFreePath = crossSectionHandler->
222                    BuildMeanFreePathForMaterials(&cutForDelta);
223
224  if(verboseLevel > 0) {
225    G4cout << "The MeanFreePath table is built"
226           << G4endl;
227    if(verboseLevel > 1) theMeanFreePath->PrintData();
228  }
229
230  // Build common DEDX table for all ionisation processes
231 
232  BuildDEDXTable(aParticleType);
233
234  if (verboseLevel > 0) {
235    G4cout << "G4LowEnergyIonisation::BuildPhysicsTable end"
236           << G4endl;
237  }
238}
239
240
241void G4LowEnergyIonisation::BuildLossTable(const G4ParticleDefinition& )
242{
243  // Build table for energy loss due to soft brems
244  // the tables are built for *MATERIALS* binning is taken from LowEnergyLoss
245
246  G4double lowKineticEnergy  = GetLowerBoundEloss();
247  G4double highKineticEnergy = GetUpperBoundEloss();
248  size_t   totBin = GetNbinEloss();
249 
250  //  create table
251
252  if (theLossTable) { 
253      theLossTable->clearAndDestroy();
254      delete theLossTable;
255  }
256  const G4ProductionCutsTable* theCoupleTable=
257        G4ProductionCutsTable::GetProductionCutsTable();
258  size_t numOfCouples = theCoupleTable->GetTableSize();
259  theLossTable = new G4PhysicsTable(numOfCouples);
260
261  if (shellVacancy != 0) delete shellVacancy;
262  shellVacancy = new G4ShellVacancy();
263  G4DataVector* ksi = 0;
264  G4DataVector* energy = 0;
265  size_t binForFluo = totBin/10;
266
267  G4PhysicsLogVector* bVector = new G4PhysicsLogVector(lowKineticEnergy,
268                                                       highKineticEnergy,
269                                                       binForFluo);
270  const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
271 
272  // Clean up the vector of cuts
273
274  cutForDelta.clear();
275
276  // Loop for materials
277
278  for (size_t m=0; m<numOfCouples; m++) {
279
280    // create physics vector and fill it
281    G4PhysicsLogVector* aVector = new G4PhysicsLogVector(lowKineticEnergy,
282                                                         highKineticEnergy,
283                                                         totBin);
284
285    // get material parameters needed for the energy loss calculation
286    const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(m);
287    const G4Material* material= couple->GetMaterial();
288
289    // the cut cannot be below lowest limit
290    G4double tCut = (*(theCoupleTable->GetEnergyCutsVector(1)))[m];
291    if(tCut > highKineticEnergy) tCut = highKineticEnergy;
292    cutForDelta.push_back(tCut);
293    const G4ElementVector* theElementVector = material->GetElementVector();
294    size_t NumberOfElements = material->GetNumberOfElements() ;
295    const G4double* theAtomicNumDensityVector =
296                    material->GetAtomicNumDensityVector();
297    if(verboseLevel > 0) {
298      G4cout << "Energy loss for material # " << m
299             << " tCut(keV)= " << tCut/keV
300             << G4endl;
301      }
302
303    // now comes the loop for the kinetic energy values
304    for (size_t i = 0; i<totBin; i++) {
305
306      G4double lowEdgeEnergy = aVector->GetLowEdgeEnergy(i);
307      G4double ionloss = 0.;
308
309      // loop for elements in the material
310      for (size_t iel=0; iel<NumberOfElements; iel++ ) {
311
312        G4int Z = (G4int)((*theElementVector)[iel]->GetZ());
313
314        G4int nShells = transitionManager->NumberOfShells(Z);
315
316        for (G4int n=0; n<nShells; n++) {
317
318          G4double e = energySpectrum->AverageEnergy(Z, 0.0, tCut,
319                                                             lowEdgeEnergy, n);
320          G4double cs= crossSectionHandler->FindValue(Z, lowEdgeEnergy, n);
321          ionloss   += e * cs * theAtomicNumDensityVector[iel];
322
323          if(verboseLevel > 1 || (Z == 14 && lowEdgeEnergy>1. && lowEdgeEnergy<0.)) {
324            G4cout << "Z= " << Z
325                   << " shell= " << n
326                   << " E(keV)= " << lowEdgeEnergy/keV
327                   << " Eav(keV)= " << e/keV
328                   << " cs= " << cs
329                   << " loss= " << ionloss
330                   << " rho= " << theAtomicNumDensityVector[iel]
331                   << G4endl;
332          }
333        }
334        G4double esp = energySpectrum->Excitation(Z, lowEdgeEnergy);
335        ionloss   += esp * theAtomicNumDensityVector[iel];
336
337      }
338      if(verboseLevel > 1 || (m == 0 && lowEdgeEnergy>=1. && lowEdgeEnergy<=0.)) {
339            G4cout << "Sum: "
340                   << " E(keV)= " << lowEdgeEnergy/keV
341                   << " loss(MeV/mm)= " << ionloss*mm/MeV
342                   << G4endl;
343      }
344      aVector->PutValue(i,ionloss);
345    }
346    theLossTable->insert(aVector);
347
348    // fill data for fluorescence
349
350    G4VDataSetAlgorithm* interp = new G4LogLogInterpolation();
351    G4VEMDataSet* xsis = new G4CompositeEMDataSet(interp, 1., 1.);
352    for (size_t iel=0; iel<NumberOfElements; iel++ ) {
353
354      G4int Z = (G4int)((*theElementVector)[iel]->GetZ());
355      energy = new G4DataVector();
356      ksi    = new G4DataVector();
357
358      for (size_t j = 0; j<binForFluo; j++) {
359
360        G4double lowEdgeEnergy = bVector->GetLowEdgeEnergy(j);
361        G4double cross   = 0.;
362        G4double eAverage= 0.;
363        G4int nShells = transitionManager->NumberOfShells(Z);
364
365        for (G4int n=0; n<nShells; n++) {
366
367          G4double e = energySpectrum->AverageEnergy(Z, 0.0, tCut,
368                                                             lowEdgeEnergy, n);
369          G4double pro = energySpectrum->Probability(Z, 0.0, tCut,
370                                                             lowEdgeEnergy, n);
371          G4double cs= crossSectionHandler->FindValue(Z, lowEdgeEnergy, n);
372          eAverage   += e * cs * theAtomicNumDensityVector[iel];
373          cross      += cs * pro * theAtomicNumDensityVector[iel];
374          if(verboseLevel > 1) {
375            G4cout << "Z= " << Z
376                   << " shell= " << n
377                   << " E(keV)= " << lowEdgeEnergy/keV
378                   << " Eav(keV)= " << e/keV
379                   << " pro= " << pro
380                   << " cs= " << cs
381                   << G4endl;
382          }
383        }
384
385        G4double coeff = 0.0;
386        if(eAverage > 0.) {
387          coeff = cross/eAverage;
388          eAverage /= cross;
389        }
390
391        if(verboseLevel > 1) {
392            G4cout << "Ksi Coefficient for Z= " << Z
393                   << " E(keV)= " << lowEdgeEnergy/keV
394                   << " Eav(keV)= " << eAverage/keV
395                   << " coeff= " << coeff
396                   << G4endl;
397        }
398
399        energy->push_back(lowEdgeEnergy);
400        ksi->push_back(coeff);
401      }
402      interp = new G4LogLogInterpolation();
403      G4VEMDataSet* set = new G4EMDataSet(Z,energy,ksi,interp,1.,1.);
404      xsis->AddComponent(set);
405    }
406    if(verboseLevel) xsis->PrintData();
407    shellVacancy->AddXsiTable(xsis);
408  }
409  delete bVector;
410}
411
412
413G4VParticleChange* G4LowEnergyIonisation::PostStepDoIt(const G4Track& track,
414                                                       const G4Step&  step)
415{
416  // Delta electron production mechanism on base of the model
417  // J. Stepanek " A program to determine the radiation spectra due
418  // to a single atomic subshell ionisation by a particle or due to
419  // deexcitation or decay of radionuclides",
420  // Comp. Phys. Comm. 1206 pp 1-19 (1997)
421
422  aParticleChange.Initialize(track);
423
424  const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple();
425  G4double kineticEnergy = track.GetKineticEnergy();
426
427  // Select atom and shell
428
429  G4int Z = crossSectionHandler->SelectRandomAtom(couple, kineticEnergy);
430  G4int shell = crossSectionHandler->SelectRandomShell(Z, kineticEnergy);
431  const G4AtomicShell* atomicShell =
432                (G4AtomicTransitionManager::Instance())->Shell(Z, shell);
433  G4double bindingEnergy = atomicShell->BindingEnergy();
434  G4int shellId = atomicShell->ShellId();
435
436  // Sample delta energy
437
438  G4int    index  = couple->GetIndex();
439  G4double tCut   = cutForDelta[index];
440  G4double tmax   = energySpectrum->MaxEnergyOfSecondaries(kineticEnergy);
441  G4double tDelta = energySpectrum->SampleEnergy(Z, tCut, tmax,
442                                                 kineticEnergy, shell);
443
444  if(tDelta == 0.0)
445    return G4VContinuousDiscreteProcess::PostStepDoIt(track, step);
446
447  // Transform to shell potential
448  G4double deltaKinE = tDelta + 2.0*bindingEnergy;
449  G4double primaryKinE = kineticEnergy + 2.0*bindingEnergy;
450
451  // sampling of scattering angle neglecting atomic motion
452  G4double deltaMom = std::sqrt(deltaKinE*(deltaKinE + 2.0*electron_mass_c2));
453  G4double primaryMom = std::sqrt(primaryKinE*(primaryKinE + 2.0*electron_mass_c2));
454
455  G4double cost = deltaKinE * (primaryKinE + 2.0*electron_mass_c2)
456                            / (deltaMom * primaryMom);
457
458  if (cost > 1.) cost = 1.;
459  G4double sint = std::sqrt(1. - cost*cost);
460  G4double phi  = twopi * G4UniformRand();
461  G4double dirx = sint * std::cos(phi);
462  G4double diry = sint * std::sin(phi);
463  G4double dirz = cost;
464
465  // Rotate to incident electron direction
466  G4ThreeVector primaryDirection = track.GetMomentumDirection();
467  G4ThreeVector deltaDir(dirx,diry,dirz);
468  deltaDir.rotateUz(primaryDirection);
469  dirx = deltaDir.x();
470  diry = deltaDir.y();
471  dirz = deltaDir.z();
472
473
474  // Take into account atomic motion del is relative momentum of the motion
475  // kinetic energy of the motion == bindingEnergy in V.Ivanchenko model
476
477  cost = 2.0*G4UniformRand() - 1.0;
478  sint = std::sqrt(1. - cost*cost);
479  phi  = twopi * G4UniformRand();
480  G4double del = std::sqrt(bindingEnergy *(bindingEnergy + 2.0*electron_mass_c2))
481               / deltaMom;
482  dirx += del* sint * std::cos(phi);
483  diry += del* sint * std::sin(phi);
484  dirz += del* cost;
485
486  // Find out new primary electron direction
487  G4double finalPx = primaryMom*primaryDirection.x() - deltaMom*dirx;
488  G4double finalPy = primaryMom*primaryDirection.y() - deltaMom*diry;
489  G4double finalPz = primaryMom*primaryDirection.z() - deltaMom*dirz;
490
491  // create G4DynamicParticle object for delta ray
492  G4DynamicParticle* theDeltaRay = new G4DynamicParticle();
493  theDeltaRay->SetKineticEnergy(tDelta);
494  G4double norm = 1.0/std::sqrt(dirx*dirx + diry*diry + dirz*dirz);
495  dirx *= norm;
496  diry *= norm;
497  dirz *= norm;
498  theDeltaRay->SetMomentumDirection(dirx, diry, dirz);
499  theDeltaRay->SetDefinition(G4Electron::Electron());
500
501  G4double theEnergyDeposit = bindingEnergy;
502
503  // fill ParticleChange
504  // changed energy and momentum of the actual particle
505
506  G4double finalKinEnergy = kineticEnergy - tDelta - theEnergyDeposit;
507  if(finalKinEnergy < 0.0) {
508    theEnergyDeposit += finalKinEnergy;
509    finalKinEnergy    = 0.0;
510    aParticleChange.ProposeTrackStatus(fStopAndKill);
511
512  } else {
513
514    G4double norm = 1.0/std::sqrt(finalPx*finalPx+finalPy*finalPy+finalPz*finalPz);
515    finalPx *= norm;
516    finalPy *= norm;
517    finalPz *= norm;
518    aParticleChange.ProposeMomentumDirection(finalPx, finalPy, finalPz);
519  }
520
521  aParticleChange.ProposeEnergy(finalKinEnergy);
522
523  // Generation of Fluorescence and Auger
524  size_t nSecondaries = 0;
525  size_t totalNumber  = 1;
526  std::vector<G4DynamicParticle*>* secondaryVector = 0;
527  G4DynamicParticle* aSecondary = 0;
528  G4ParticleDefinition* type = 0;
529
530  // Fluorescence data start from element 6
531
532  if (Fluorescence() && Z > 5 && (bindingEnergy >= cutForPhotons
533            ||  bindingEnergy >= cutForElectrons)) {
534
535    secondaryVector = deexcitationManager.GenerateParticles(Z, shellId);
536
537    if (secondaryVector != 0) {
538
539      nSecondaries = secondaryVector->size();
540      for (size_t i = 0; i<nSecondaries; i++) {
541
542        aSecondary = (*secondaryVector)[i];
543        if (aSecondary) {
544
545          G4double e = aSecondary->GetKineticEnergy();
546          type = aSecondary->GetDefinition();
547          if (e < theEnergyDeposit &&
548                ((type == G4Gamma::Gamma() && e > cutForPhotons ) ||
549                 (type == G4Electron::Electron() && e > cutForElectrons ))) {
550
551             theEnergyDeposit -= e;
552             totalNumber++;
553
554          } else {
555
556             delete aSecondary;
557             (*secondaryVector)[i] = 0;
558          }
559        }
560      }
561    }
562  }
563
564  // Save delta-electrons
565
566  aParticleChange.SetNumberOfSecondaries(totalNumber);
567  aParticleChange.AddSecondary(theDeltaRay);
568
569  // Save Fluorescence and Auger
570
571  if (secondaryVector) {
572
573    for (size_t l = 0; l < nSecondaries; l++) {
574
575      aSecondary = (*secondaryVector)[l];
576
577      if(aSecondary) {
578
579        aParticleChange.AddSecondary(aSecondary);
580      }
581    }
582    delete secondaryVector;
583  }
584
585  if(theEnergyDeposit < 0.) {
586    G4cout << "G4LowEnergyIonisation: Negative energy deposit: "
587           << theEnergyDeposit/eV << " eV" << G4endl;
588    theEnergyDeposit = 0.0;
589  }
590  aParticleChange.ProposeLocalEnergyDeposit(theEnergyDeposit);
591
592  return G4VContinuousDiscreteProcess::PostStepDoIt(track, step);
593}
594
595
596void G4LowEnergyIonisation::PrintInfoDefinition()
597{
598  G4String comments = "Total cross sections from EEDL database.";
599  comments += "\n      Gamma energy sampled from a parametrised formula.";
600  comments += "\n      Implementation of the continuous dE/dx part.";
601  comments += "\n      At present it can be used for electrons ";
602  comments += "in the energy range [250eV,100GeV].";
603  comments += "\n      The process must work with G4LowEnergyBremsstrahlung.";
604
605  G4cout << G4endl << GetProcessName() << ":  " << comments << G4endl;
606}
607
608G4bool G4LowEnergyIonisation::IsApplicable(const G4ParticleDefinition& particle)
609{
610   return ( (&particle == G4Electron::Electron()) );
611}
612
613std::vector<G4DynamicParticle*>*
614G4LowEnergyIonisation::DeexciteAtom(const G4MaterialCutsCouple* couple,
615                                          G4double incidentEnergy,
616                                          G4double eLoss)
617{
618  // create vector of secondary particles
619  const G4Material* material = couple->GetMaterial();
620
621  std::vector<G4DynamicParticle*>* partVector =
622                                 new std::vector<G4DynamicParticle*>;
623
624  if(eLoss > cutForPhotons && eLoss > cutForElectrons) {
625
626    const G4AtomicTransitionManager* transitionManager =
627                               G4AtomicTransitionManager::Instance();
628
629    size_t nElements = material->GetNumberOfElements();
630    const G4ElementVector* theElementVector = material->GetElementVector();
631
632    std::vector<G4DynamicParticle*>* secVector = 0;
633    G4DynamicParticle* aSecondary = 0;
634    G4ParticleDefinition* type = 0;
635    G4double e;
636    G4ThreeVector position;
637    G4int shell, shellId;
638
639    // sample secondaries
640
641    G4double eTot = 0.0;
642    std::vector<G4int> n =
643           shellVacancy->GenerateNumberOfIonisations(couple,
644                                                     incidentEnergy,eLoss);
645    for (size_t i=0; i<nElements; i++) {
646
647      G4int Z = (G4int)((*theElementVector)[i]->GetZ());
648      size_t nVacancies = n[i];
649
650      G4double maxE = transitionManager->Shell(Z, 0)->BindingEnergy();
651
652      if (nVacancies && Z > 5 && (maxE>cutForPhotons || maxE>cutForElectrons)) {
653
654        for (size_t j=0; j<nVacancies; j++) {
655
656          shell = crossSectionHandler->SelectRandomShell(Z, incidentEnergy);
657          shellId = transitionManager->Shell(Z, shell)->ShellId();
658          G4double maxEShell =
659                     transitionManager->Shell(Z, shell)->BindingEnergy();
660
661          if (maxEShell>cutForPhotons || maxEShell>cutForElectrons ) {
662
663            secVector = deexcitationManager.GenerateParticles(Z, shellId);
664
665            if (secVector != 0) {
666
667              for (size_t l = 0; l<secVector->size(); l++) {
668
669                aSecondary = (*secVector)[l];
670                if (aSecondary != 0) {
671
672                  e = aSecondary->GetKineticEnergy();
673                  type = aSecondary->GetDefinition();
674                  if ( eTot + e <= eLoss &&
675                     ((type == G4Gamma::Gamma() && e>cutForPhotons ) ||
676                     (type == G4Electron::Electron() && e>cutForElectrons))) {
677
678                          eTot += e;
679                          partVector->push_back(aSecondary);
680
681                  } else {
682
683                           delete aSecondary;
684
685                  }
686                }
687              }
688              delete secVector;
689            }
690          }
691        }
692      }
693    }
694  }
695  return partVector;
696}
697
698G4double G4LowEnergyIonisation::GetMeanFreePath(const G4Track& track,
699                                                G4double , // previousStepSize
700                                                G4ForceCondition* cond)
701{
702   *cond = NotForced;
703   G4int index = (track.GetMaterialCutsCouple())->GetIndex();
704   const G4VEMDataSet* data = theMeanFreePath->GetComponent(index);
705   G4double meanFreePath = data->FindValue(track.GetKineticEnergy());
706   return meanFreePath;
707}
708
709void G4LowEnergyIonisation::SetCutForLowEnSecPhotons(G4double cut)
710{
711  cutForPhotons = cut;
712  deexcitationManager.SetCutForSecondaryPhotons(cut);
713}
714
715void G4LowEnergyIonisation::SetCutForLowEnSecElectrons(G4double cut)
716{
717  cutForElectrons = cut;
718  deexcitationManager.SetCutForAugerElectrons(cut);
719}
720
721void G4LowEnergyIonisation::ActivateAuger(G4bool val)
722{
723  deexcitationManager.ActivateAugerElectronProduction(val);
724}
725
Note: See TracBrowser for help on using the repository browser.