| [819] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| [961] | 27 | // $Id: G4LowEnergyPolarizedCompton.cc,v 1.25 2008/05/02 19:23:38 pia Exp $
|
|---|
| [1007] | 28 | // GEANT4 tag $Name: geant4-09-02 $
|
|---|
| [819] | 29 | //
|
|---|
| 30 | // ------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class implementation file
|
|---|
| 32 | // CERN Geneva Switzerland
|
|---|
| 33 | //
|
|---|
| 34 |
|
|---|
| 35 | // --------- G4LowEnergyPolarizedCompton class -----
|
|---|
| 36 | //
|
|---|
| 37 | // by G.Depaola & F.Longo (21 may 2001)
|
|---|
| 38 | //
|
|---|
| 39 | // 21 May 2001 - MGP Modified to inherit from G4VDiscreteProcess
|
|---|
| 40 | // Applies same algorithm as LowEnergyCompton
|
|---|
| 41 | // if the incoming photon is not polarised
|
|---|
| 42 | // Temporary protection to avoid crash in the case
|
|---|
| 43 | // of polarisation || incident photon direction
|
|---|
| 44 | //
|
|---|
| 45 | // 17 October 2001 - F.Longo - Revised according to a design iteration
|
|---|
| 46 | //
|
|---|
| 47 | // 21 February 2002 - F.Longo Revisions with A.Zoglauer and G.Depaola
|
|---|
| 48 | // - better description of parallelism
|
|---|
| 49 | // - system of ref change method improved
|
|---|
| 50 | // 22 January 2003 - V.Ivanchenko Cut per region
|
|---|
| 51 | // 24 April 2003 - V.Ivanchenko Cut per region mfpt
|
|---|
| 52 | //
|
|---|
| 53 | //
|
|---|
| 54 | // ************************************************************
|
|---|
| 55 | //
|
|---|
| 56 | // Corrections by Rui Curado da Silva (2000)
|
|---|
| 57 | // New Implementation by G.Depaola & F.Longo
|
|---|
| 58 | //
|
|---|
| 59 | // - sampling of phi
|
|---|
| 60 | // - polarization of scattered photon
|
|---|
| 61 | //
|
|---|
| 62 | // --------------------------------------------------------------
|
|---|
| 63 |
|
|---|
| 64 | #include "G4LowEnergyPolarizedCompton.hh"
|
|---|
| 65 | #include "Randomize.hh"
|
|---|
| 66 | #include "G4ParticleDefinition.hh"
|
|---|
| 67 | #include "G4Track.hh"
|
|---|
| 68 | #include "G4Step.hh"
|
|---|
| 69 | #include "G4ForceCondition.hh"
|
|---|
| 70 | #include "G4Gamma.hh"
|
|---|
| 71 | #include "G4Electron.hh"
|
|---|
| 72 | #include "G4DynamicParticle.hh"
|
|---|
| 73 | #include "G4VParticleChange.hh"
|
|---|
| 74 | #include "G4ThreeVector.hh"
|
|---|
| 75 | #include "G4VCrossSectionHandler.hh"
|
|---|
| 76 | #include "G4CrossSectionHandler.hh"
|
|---|
| 77 | #include "G4VEMDataSet.hh"
|
|---|
| 78 | #include "G4CompositeEMDataSet.hh"
|
|---|
| 79 | #include "G4VDataSetAlgorithm.hh"
|
|---|
| 80 | #include "G4LogLogInterpolation.hh"
|
|---|
| 81 | #include "G4VRangeTest.hh"
|
|---|
| 82 | #include "G4RangeTest.hh"
|
|---|
| 83 | #include "G4MaterialCutsCouple.hh"
|
|---|
| 84 |
|
|---|
| 85 | // constructor
|
|---|
| 86 |
|
|---|
| 87 | G4LowEnergyPolarizedCompton::G4LowEnergyPolarizedCompton(const G4String& processName)
|
|---|
| 88 | : G4VDiscreteProcess(processName),
|
|---|
| 89 | lowEnergyLimit (250*eV), // initialization
|
|---|
| 90 | highEnergyLimit(100*GeV),
|
|---|
| 91 | intrinsicLowEnergyLimit(10*eV),
|
|---|
| 92 | intrinsicHighEnergyLimit(100*GeV)
|
|---|
| 93 | {
|
|---|
| 94 | if (lowEnergyLimit < intrinsicLowEnergyLimit ||
|
|---|
| 95 | highEnergyLimit > intrinsicHighEnergyLimit)
|
|---|
| 96 | {
|
|---|
| 97 | G4Exception("G4LowEnergyPolarizedCompton::G4LowEnergyPolarizedCompton - energy outside intrinsic process validity range");
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 | crossSectionHandler = new G4CrossSectionHandler;
|
|---|
| 101 |
|
|---|
| 102 |
|
|---|
| 103 | G4VDataSetAlgorithm* scatterInterpolation = new G4LogLogInterpolation;
|
|---|
| 104 | G4String scatterFile = "comp/ce-sf-";
|
|---|
| 105 | scatterFunctionData = new G4CompositeEMDataSet(scatterInterpolation,1.,1.);
|
|---|
| 106 | scatterFunctionData->LoadData(scatterFile);
|
|---|
| 107 |
|
|---|
| 108 | meanFreePathTable = 0;
|
|---|
| 109 |
|
|---|
| 110 | rangeTest = new G4RangeTest;
|
|---|
| 111 |
|
|---|
| [961] | 112 | // For Doppler broadening
|
|---|
| 113 | shellData.SetOccupancyData();
|
|---|
| 114 |
|
|---|
| 115 |
|
|---|
| [819] | 116 | if (verboseLevel > 0)
|
|---|
| 117 | {
|
|---|
| 118 | G4cout << GetProcessName() << " is created " << G4endl
|
|---|
| 119 | << "Energy range: "
|
|---|
| 120 | << lowEnergyLimit / keV << " keV - "
|
|---|
| 121 | << highEnergyLimit / GeV << " GeV"
|
|---|
| 122 | << G4endl;
|
|---|
| 123 | }
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | // destructor
|
|---|
| 127 |
|
|---|
| 128 | G4LowEnergyPolarizedCompton::~G4LowEnergyPolarizedCompton()
|
|---|
| 129 | {
|
|---|
| 130 | delete meanFreePathTable;
|
|---|
| 131 | delete crossSectionHandler;
|
|---|
| 132 | delete scatterFunctionData;
|
|---|
| 133 | delete rangeTest;
|
|---|
| 134 | }
|
|---|
| 135 |
|
|---|
| 136 |
|
|---|
| 137 | void G4LowEnergyPolarizedCompton::BuildPhysicsTable(const G4ParticleDefinition& )
|
|---|
| 138 | {
|
|---|
| 139 |
|
|---|
| 140 | crossSectionHandler->Clear();
|
|---|
| 141 | G4String crossSectionFile = "comp/ce-cs-";
|
|---|
| 142 | crossSectionHandler->LoadData(crossSectionFile);
|
|---|
| 143 | delete meanFreePathTable;
|
|---|
| 144 | meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials();
|
|---|
| [961] | 145 |
|
|---|
| 146 | // For Doppler broadening
|
|---|
| 147 | G4String file = "/doppler/shell-doppler";
|
|---|
| 148 | shellData.LoadData(file);
|
|---|
| 149 |
|
|---|
| [819] | 150 | }
|
|---|
| 151 |
|
|---|
| 152 | G4VParticleChange* G4LowEnergyPolarizedCompton::PostStepDoIt(const G4Track& aTrack,
|
|---|
| 153 | const G4Step& aStep)
|
|---|
| 154 | {
|
|---|
| 155 | // The scattered gamma energy is sampled according to Klein - Nishina formula.
|
|---|
| 156 | // The random number techniques of Butcher & Messel are used (Nuc Phys 20(1960),15).
|
|---|
| 157 | // GEANT4 internal units
|
|---|
| 158 | //
|
|---|
| 159 | // Note : Effects due to binding of atomic electrons are negliged.
|
|---|
| 160 |
|
|---|
| 161 | aParticleChange.Initialize(aTrack);
|
|---|
| 162 |
|
|---|
| 163 | // Dynamic particle quantities
|
|---|
| 164 | const G4DynamicParticle* incidentPhoton = aTrack.GetDynamicParticle();
|
|---|
| 165 | G4double gammaEnergy0 = incidentPhoton->GetKineticEnergy();
|
|---|
| 166 | G4ThreeVector gammaPolarization0 = incidentPhoton->GetPolarization();
|
|---|
| 167 |
|
|---|
| 168 | // gammaPolarization0 = gammaPolarization0.unit(); //
|
|---|
| 169 |
|
|---|
| 170 | // Protection: a polarisation parallel to the
|
|---|
| 171 | // direction causes problems;
|
|---|
| 172 | // in that case find a random polarization
|
|---|
| 173 |
|
|---|
| 174 | G4ThreeVector gammaDirection0 = incidentPhoton->GetMomentumDirection();
|
|---|
| 175 | // ---- MGP ---- Next two lines commented out to remove compilation warnings
|
|---|
| 176 | // G4double scalarproduct = gammaPolarization0.dot(gammaDirection0);
|
|---|
| 177 | // G4double angle = gammaPolarization0.angle(gammaDirection0);
|
|---|
| 178 |
|
|---|
| 179 | // Make sure that the polarization vector is perpendicular to the
|
|---|
| 180 | // gamma direction. If not
|
|---|
| 181 |
|
|---|
| 182 | if(!(gammaPolarization0.isOrthogonal(gammaDirection0, 1e-6))||(gammaPolarization0.mag()==0))
|
|---|
| 183 | { // only for testing now
|
|---|
| 184 | gammaPolarization0 = GetRandomPolarization(gammaDirection0);
|
|---|
| 185 | }
|
|---|
| 186 | else
|
|---|
| 187 | {
|
|---|
| 188 | if ( gammaPolarization0.howOrthogonal(gammaDirection0) != 0)
|
|---|
| 189 | {
|
|---|
| 190 | gammaPolarization0 = GetPerpendicularPolarization(gammaDirection0, gammaPolarization0);
|
|---|
| 191 | }
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | // End of Protection
|
|---|
| 195 |
|
|---|
| 196 | // Within energy limit?
|
|---|
| 197 |
|
|---|
| 198 | if(gammaEnergy0 <= lowEnergyLimit)
|
|---|
| 199 | {
|
|---|
| 200 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 201 | aParticleChange.ProposeEnergy(0.);
|
|---|
| 202 | aParticleChange.ProposeLocalEnergyDeposit(gammaEnergy0);
|
|---|
| 203 | return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | G4double E0_m = gammaEnergy0 / electron_mass_c2 ;
|
|---|
| 207 |
|
|---|
| 208 | // Select randomly one element in the current material
|
|---|
| 209 |
|
|---|
| 210 | const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple();
|
|---|
| 211 | G4int Z = crossSectionHandler->SelectRandomAtom(couple,gammaEnergy0);
|
|---|
| 212 |
|
|---|
| 213 | // Sample the energy and the polarization of the scattered photon
|
|---|
| 214 |
|
|---|
| 215 | G4double epsilon, epsilonSq, onecost, sinThetaSqr, greject ;
|
|---|
| 216 |
|
|---|
| 217 | G4double epsilon0 = 1./(1. + 2*E0_m);
|
|---|
| 218 | G4double epsilon0Sq = epsilon0*epsilon0;
|
|---|
| 219 | G4double alpha1 = - std::log(epsilon0);
|
|---|
| 220 | G4double alpha2 = 0.5*(1.- epsilon0Sq);
|
|---|
| 221 |
|
|---|
| 222 | G4double wlGamma = h_Planck*c_light/gammaEnergy0;
|
|---|
| 223 | G4double gammaEnergy1;
|
|---|
| 224 | G4ThreeVector gammaDirection1;
|
|---|
| 225 |
|
|---|
| 226 | do {
|
|---|
| 227 | if ( alpha1/(alpha1+alpha2) > G4UniformRand() )
|
|---|
| 228 | {
|
|---|
| 229 | epsilon = std::exp(-alpha1*G4UniformRand());
|
|---|
| 230 | epsilonSq = epsilon*epsilon;
|
|---|
| 231 | }
|
|---|
| 232 | else
|
|---|
| 233 | {
|
|---|
| 234 | epsilonSq = epsilon0Sq + (1.- epsilon0Sq)*G4UniformRand();
|
|---|
| 235 | epsilon = std::sqrt(epsilonSq);
|
|---|
| 236 | }
|
|---|
| 237 |
|
|---|
| 238 | onecost = (1.- epsilon)/(epsilon*E0_m);
|
|---|
| 239 | sinThetaSqr = onecost*(2.-onecost);
|
|---|
| 240 |
|
|---|
| 241 | // Protection
|
|---|
| 242 | if (sinThetaSqr > 1.)
|
|---|
| 243 | {
|
|---|
| 244 | if (verboseLevel>0) G4cout
|
|---|
| 245 | << " -- Warning -- G4LowEnergyPolarizedCompton::PostStepDoIt "
|
|---|
| 246 | << "sin(theta)**2 = "
|
|---|
| 247 | << sinThetaSqr
|
|---|
| 248 | << "; set to 1"
|
|---|
| 249 | << G4endl;
|
|---|
| 250 | sinThetaSqr = 1.;
|
|---|
| 251 | }
|
|---|
| 252 | if (sinThetaSqr < 0.)
|
|---|
| 253 | {
|
|---|
| 254 | if (verboseLevel>0) G4cout
|
|---|
| 255 | << " -- Warning -- G4LowEnergyPolarizedCompton::PostStepDoIt "
|
|---|
| 256 | << "sin(theta)**2 = "
|
|---|
| 257 | << sinThetaSqr
|
|---|
| 258 | << "; set to 0"
|
|---|
| 259 | << G4endl;
|
|---|
| 260 | sinThetaSqr = 0.;
|
|---|
| 261 | }
|
|---|
| 262 | // End protection
|
|---|
| 263 |
|
|---|
| 264 | G4double x = std::sqrt(onecost/2.) / (wlGamma/cm);;
|
|---|
| 265 | G4double scatteringFunction = scatterFunctionData->FindValue(x,Z-1);
|
|---|
| 266 | greject = (1. - epsilon*sinThetaSqr/(1.+ epsilonSq))*scatteringFunction;
|
|---|
| 267 |
|
|---|
| 268 | } while(greject < G4UniformRand()*Z);
|
|---|
| 269 |
|
|---|
| 270 |
|
|---|
| 271 | // ****************************************************
|
|---|
| 272 | // Phi determination
|
|---|
| 273 | // ****************************************************
|
|---|
| 274 |
|
|---|
| 275 | G4double phi = SetPhi(epsilon,sinThetaSqr);
|
|---|
| 276 |
|
|---|
| 277 | //
|
|---|
| 278 | // scattered gamma angles. ( Z - axis along the parent gamma)
|
|---|
| 279 | //
|
|---|
| 280 |
|
|---|
| 281 | G4double cosTheta = 1. - onecost;
|
|---|
| 282 |
|
|---|
| 283 | // Protection
|
|---|
| 284 |
|
|---|
| 285 | if (cosTheta > 1.)
|
|---|
| 286 | {
|
|---|
| 287 | if (verboseLevel>0) G4cout
|
|---|
| 288 | << " -- Warning -- G4LowEnergyPolarizedCompton::PostStepDoIt "
|
|---|
| 289 | << "cosTheta = "
|
|---|
| 290 | << cosTheta
|
|---|
| 291 | << "; set to 1"
|
|---|
| 292 | << G4endl;
|
|---|
| 293 | cosTheta = 1.;
|
|---|
| 294 | }
|
|---|
| 295 | if (cosTheta < -1.)
|
|---|
| 296 | {
|
|---|
| 297 | if (verboseLevel>0) G4cout
|
|---|
| 298 | << " -- Warning -- G4LowEnergyPolarizedCompton::PostStepDoIt "
|
|---|
| 299 | << "cosTheta = "
|
|---|
| 300 | << cosTheta
|
|---|
| 301 | << "; set to -1"
|
|---|
| 302 | << G4endl;
|
|---|
| 303 | cosTheta = -1.;
|
|---|
| 304 | }
|
|---|
| 305 | // End protection
|
|---|
| 306 |
|
|---|
| 307 |
|
|---|
| 308 | G4double sinTheta = std::sqrt (sinThetaSqr);
|
|---|
| 309 |
|
|---|
| 310 | // Protection
|
|---|
| 311 | if (sinTheta > 1.)
|
|---|
| 312 | {
|
|---|
| 313 | if (verboseLevel>0) G4cout
|
|---|
| 314 | << " -- Warning -- G4LowEnergyPolarizedCompton::PostStepDoIt "
|
|---|
| 315 | << "sinTheta = "
|
|---|
| 316 | << sinTheta
|
|---|
| 317 | << "; set to 1"
|
|---|
| 318 | << G4endl;
|
|---|
| 319 | sinTheta = 1.;
|
|---|
| 320 | }
|
|---|
| 321 | if (sinTheta < -1.)
|
|---|
| 322 | {
|
|---|
| 323 | if (verboseLevel>0) G4cout
|
|---|
| 324 | << " -- Warning -- G4LowEnergyPolarizedCompton::PostStepDoIt "
|
|---|
| 325 | << "sinTheta = "
|
|---|
| 326 | << sinTheta
|
|---|
| 327 | << "; set to -1"
|
|---|
| 328 | << G4endl;
|
|---|
| 329 | sinTheta = -1.;
|
|---|
| 330 | }
|
|---|
| 331 | // End protection
|
|---|
| 332 |
|
|---|
| 333 |
|
|---|
| 334 | G4double dirx = sinTheta*std::cos(phi);
|
|---|
| 335 | G4double diry = sinTheta*std::sin(phi);
|
|---|
| 336 | G4double dirz = cosTheta ;
|
|---|
| 337 |
|
|---|
| [961] | 338 |
|
|---|
| 339 | // oneCosT , eom
|
|---|
| 340 |
|
|---|
| 341 |
|
|---|
| 342 |
|
|---|
| 343 | // Doppler broadening - Method based on:
|
|---|
| 344 | // Y. Namito, S. Ban and H. Hirayama,
|
|---|
| 345 | // "Implementation of the Doppler Broadening of a Compton-Scattered Photon Into the EGS4 Code"
|
|---|
| 346 | // NIM A 349, pp. 489-494, 1994
|
|---|
| 347 |
|
|---|
| 348 | // Maximum number of sampling iterations
|
|---|
| 349 |
|
|---|
| 350 | G4int maxDopplerIterations = 1000;
|
|---|
| 351 | G4double bindingE = 0.;
|
|---|
| 352 | G4double photonEoriginal = epsilon * gammaEnergy0;
|
|---|
| 353 | G4double photonE = -1.;
|
|---|
| 354 | G4int iteration = 0;
|
|---|
| 355 | G4double eMax = gammaEnergy0;
|
|---|
| 356 |
|
|---|
| 357 | do
|
|---|
| 358 | {
|
|---|
| 359 | iteration++;
|
|---|
| 360 | // Select shell based on shell occupancy
|
|---|
| 361 | G4int shell = shellData.SelectRandomShell(Z);
|
|---|
| 362 | bindingE = shellData.BindingEnergy(Z,shell);
|
|---|
| 363 |
|
|---|
| 364 | eMax = gammaEnergy0 - bindingE;
|
|---|
| 365 |
|
|---|
| 366 | // Randomly sample bound electron momentum (memento: the data set is in Atomic Units)
|
|---|
| 367 | G4double pSample = profileData.RandomSelectMomentum(Z,shell);
|
|---|
| 368 | // Rescale from atomic units
|
|---|
| 369 | G4double pDoppler = pSample * fine_structure_const;
|
|---|
| 370 | G4double pDoppler2 = pDoppler * pDoppler;
|
|---|
| 371 | G4double var2 = 1. + onecost * E0_m;
|
|---|
| 372 | G4double var3 = var2*var2 - pDoppler2;
|
|---|
| 373 | G4double var4 = var2 - pDoppler2 * cosTheta;
|
|---|
| 374 | G4double var = var4*var4 - var3 + pDoppler2 * var3;
|
|---|
| 375 | if (var > 0.)
|
|---|
| 376 | {
|
|---|
| 377 | G4double varSqrt = std::sqrt(var);
|
|---|
| 378 | G4double scale = gammaEnergy0 / var3;
|
|---|
| 379 | // Random select either root
|
|---|
| 380 | if (G4UniformRand() < 0.5) photonE = (var4 - varSqrt) * scale;
|
|---|
| 381 | else photonE = (var4 + varSqrt) * scale;
|
|---|
| 382 | }
|
|---|
| 383 | else
|
|---|
| 384 | {
|
|---|
| 385 | photonE = -1.;
|
|---|
| 386 | }
|
|---|
| 387 | } while ( iteration <= maxDopplerIterations &&
|
|---|
| 388 | (photonE < 0. || photonE > eMax || photonE < eMax*G4UniformRand()) );
|
|---|
| 389 |
|
|---|
| 390 | // End of recalculation of photon energy with Doppler broadening
|
|---|
| 391 | // Revert to original if maximum number of iterations threshold has been reached
|
|---|
| 392 | if (iteration >= maxDopplerIterations)
|
|---|
| 393 | {
|
|---|
| 394 | photonE = photonEoriginal;
|
|---|
| 395 | bindingE = 0.;
|
|---|
| 396 | }
|
|---|
| 397 |
|
|---|
| 398 | gammaEnergy1 = photonE;
|
|---|
| 399 |
|
|---|
| 400 | // G4cout << "--> PHOTONENERGY1 = " << photonE/keV << G4endl;
|
|---|
| 401 |
|
|---|
| 402 |
|
|---|
| 403 | /// Doppler Broadeing
|
|---|
| 404 |
|
|---|
| 405 |
|
|---|
| 406 |
|
|---|
| 407 |
|
|---|
| [819] | 408 | //
|
|---|
| 409 | // update G4VParticleChange for the scattered photon
|
|---|
| 410 | //
|
|---|
| 411 |
|
|---|
| [961] | 412 | // gammaEnergy1 = epsilon*gammaEnergy0;
|
|---|
| [819] | 413 |
|
|---|
| [961] | 414 |
|
|---|
| [819] | 415 | // New polarization
|
|---|
| 416 |
|
|---|
| 417 | G4ThreeVector gammaPolarization1 = SetNewPolarization(epsilon,
|
|---|
| 418 | sinThetaSqr,
|
|---|
| 419 | phi,
|
|---|
| 420 | cosTheta);
|
|---|
| 421 |
|
|---|
| 422 | // Set new direction
|
|---|
| 423 | G4ThreeVector tmpDirection1( dirx,diry,dirz );
|
|---|
| 424 | gammaDirection1 = tmpDirection1;
|
|---|
| 425 |
|
|---|
| 426 | // Change reference frame.
|
|---|
| 427 |
|
|---|
| 428 | SystemOfRefChange(gammaDirection0,gammaDirection1,
|
|---|
| 429 | gammaPolarization0,gammaPolarization1);
|
|---|
| 430 |
|
|---|
| 431 | if (gammaEnergy1 > 0.)
|
|---|
| 432 | {
|
|---|
| 433 | aParticleChange.ProposeEnergy( gammaEnergy1 ) ;
|
|---|
| 434 | aParticleChange.ProposeMomentumDirection( gammaDirection1 );
|
|---|
| 435 | aParticleChange.ProposePolarization( gammaPolarization1 );
|
|---|
| 436 | }
|
|---|
| 437 | else
|
|---|
| 438 | {
|
|---|
| 439 | aParticleChange.ProposeEnergy(0.) ;
|
|---|
| 440 | aParticleChange.ProposeTrackStatus(fStopAndKill);
|
|---|
| 441 | }
|
|---|
| 442 |
|
|---|
| 443 | //
|
|---|
| 444 | // kinematic of the scattered electron
|
|---|
| 445 | //
|
|---|
| 446 |
|
|---|
| [961] | 447 | G4double ElecKineEnergy = gammaEnergy0 - gammaEnergy1 -bindingE;
|
|---|
| [819] | 448 |
|
|---|
| [961] | 449 |
|
|---|
| [819] | 450 | // Generate the electron only if with large enough range w.r.t. cuts and safety
|
|---|
| 451 |
|
|---|
| 452 | G4double safety = aStep.GetPostStepPoint()->GetSafety();
|
|---|
| 453 |
|
|---|
| [961] | 454 |
|
|---|
| [819] | 455 | if (rangeTest->Escape(G4Electron::Electron(),couple,ElecKineEnergy,safety))
|
|---|
| 456 | {
|
|---|
| 457 | G4double ElecMomentum = std::sqrt(ElecKineEnergy*(ElecKineEnergy+2.*electron_mass_c2));
|
|---|
| 458 | G4ThreeVector ElecDirection((gammaEnergy0 * gammaDirection0 -
|
|---|
| 459 | gammaEnergy1 * gammaDirection1) * (1./ElecMomentum));
|
|---|
| 460 | G4DynamicParticle* electron = new G4DynamicParticle (G4Electron::Electron(),ElecDirection.unit(),ElecKineEnergy) ;
|
|---|
| 461 | aParticleChange.SetNumberOfSecondaries(1);
|
|---|
| 462 | aParticleChange.AddSecondary(electron);
|
|---|
| [961] | 463 | // aParticleChange.ProposeLocalEnergyDeposit(0.);
|
|---|
| 464 | aParticleChange.ProposeLocalEnergyDeposit(bindingE);
|
|---|
| [819] | 465 | }
|
|---|
| 466 | else
|
|---|
| 467 | {
|
|---|
| 468 | aParticleChange.SetNumberOfSecondaries(0);
|
|---|
| [961] | 469 | aParticleChange.ProposeLocalEnergyDeposit(ElecKineEnergy+bindingE);
|
|---|
| [819] | 470 | }
|
|---|
| 471 |
|
|---|
| 472 | return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep);
|
|---|
| 473 |
|
|---|
| 474 | }
|
|---|
| 475 |
|
|---|
| 476 |
|
|---|
| 477 | G4double G4LowEnergyPolarizedCompton::SetPhi(G4double energyRate,
|
|---|
| 478 | G4double sinSqrTh)
|
|---|
| 479 | {
|
|---|
| 480 | G4double rand1;
|
|---|
| 481 | G4double rand2;
|
|---|
| 482 | G4double phiProbability;
|
|---|
| 483 | G4double phi;
|
|---|
| 484 | G4double a, b;
|
|---|
| 485 |
|
|---|
| 486 | do
|
|---|
| 487 | {
|
|---|
| 488 | rand1 = G4UniformRand();
|
|---|
| 489 | rand2 = G4UniformRand();
|
|---|
| 490 | phiProbability=0.;
|
|---|
| 491 | phi = twopi*rand1;
|
|---|
| 492 |
|
|---|
| 493 | a = 2*sinSqrTh;
|
|---|
| 494 | b = energyRate + 1/energyRate;
|
|---|
| 495 |
|
|---|
| 496 | phiProbability = 1 - (a/b)*(std::cos(phi)*std::cos(phi));
|
|---|
| 497 |
|
|---|
| 498 |
|
|---|
| 499 |
|
|---|
| 500 | }
|
|---|
| 501 | while ( rand2 > phiProbability );
|
|---|
| 502 | return phi;
|
|---|
| 503 | }
|
|---|
| 504 |
|
|---|
| 505 |
|
|---|
| 506 | G4ThreeVector G4LowEnergyPolarizedCompton::SetPerpendicularVector(G4ThreeVector& a)
|
|---|
| 507 | {
|
|---|
| 508 | G4double dx = a.x();
|
|---|
| 509 | G4double dy = a.y();
|
|---|
| 510 | G4double dz = a.z();
|
|---|
| 511 | G4double x = dx < 0.0 ? -dx : dx;
|
|---|
| 512 | G4double y = dy < 0.0 ? -dy : dy;
|
|---|
| 513 | G4double z = dz < 0.0 ? -dz : dz;
|
|---|
| 514 | if (x < y) {
|
|---|
| 515 | return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy);
|
|---|
| 516 | }else{
|
|---|
| 517 | return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0);
|
|---|
| 518 | }
|
|---|
| 519 | }
|
|---|
| 520 |
|
|---|
| 521 | G4ThreeVector G4LowEnergyPolarizedCompton::GetRandomPolarization(G4ThreeVector& direction0)
|
|---|
| 522 | {
|
|---|
| 523 | G4ThreeVector d0 = direction0.unit();
|
|---|
| 524 | G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal
|
|---|
| 525 | G4ThreeVector a0 = a1.unit(); // unit vector
|
|---|
| 526 |
|
|---|
| 527 | G4double rand1 = G4UniformRand();
|
|---|
| 528 |
|
|---|
| 529 | G4double angle = twopi*rand1; // random polar angle
|
|---|
| 530 | G4ThreeVector b0 = d0.cross(a0); // cross product
|
|---|
| 531 |
|
|---|
| 532 | G4ThreeVector c;
|
|---|
| 533 |
|
|---|
| 534 | c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x());
|
|---|
| 535 | c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y());
|
|---|
| 536 | c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z());
|
|---|
| 537 |
|
|---|
| 538 | G4ThreeVector c0 = c.unit();
|
|---|
| 539 |
|
|---|
| 540 | return c0;
|
|---|
| 541 |
|
|---|
| 542 | }
|
|---|
| 543 |
|
|---|
| 544 |
|
|---|
| 545 | G4ThreeVector G4LowEnergyPolarizedCompton::GetPerpendicularPolarization
|
|---|
| 546 | (const G4ThreeVector& gammaDirection, const G4ThreeVector& gammaPolarization) const
|
|---|
| 547 | {
|
|---|
| 548 |
|
|---|
| 549 | //
|
|---|
| 550 | // The polarization of a photon is always perpendicular to its momentum direction.
|
|---|
| 551 | // Therefore this function removes those vector component of gammaPolarization, which
|
|---|
| 552 | // points in direction of gammaDirection
|
|---|
| 553 | //
|
|---|
| 554 | // Mathematically we search the projection of the vector a on the plane E, where n is the
|
|---|
| 555 | // plains normal vector.
|
|---|
| 556 | // The basic equation can be found in each geometry book (e.g. Bronstein):
|
|---|
| 557 | // p = a - (a o n)/(n o n)*n
|
|---|
| 558 |
|
|---|
| 559 | return gammaPolarization - gammaPolarization.dot(gammaDirection)/gammaDirection.dot(gammaDirection) * gammaDirection;
|
|---|
| 560 | }
|
|---|
| 561 |
|
|---|
| 562 |
|
|---|
| 563 | G4ThreeVector G4LowEnergyPolarizedCompton::SetNewPolarization(G4double epsilon,
|
|---|
| 564 | G4double sinSqrTh,
|
|---|
| 565 | G4double phi,
|
|---|
| 566 | G4double costheta)
|
|---|
| 567 | {
|
|---|
| 568 | G4double rand1;
|
|---|
| 569 | G4double rand2;
|
|---|
| 570 | G4double cosPhi = std::cos(phi);
|
|---|
| 571 | G4double sinPhi = std::sin(phi);
|
|---|
| 572 | G4double sinTheta = std::sqrt(sinSqrTh);
|
|---|
| 573 | G4double cosSqrPhi = cosPhi*cosPhi;
|
|---|
| 574 | // G4double cossqrth = 1.-sinSqrTh;
|
|---|
| 575 | // G4double sinsqrphi = sinPhi*sinPhi;
|
|---|
| 576 | G4double normalisation = std::sqrt(1. - cosSqrPhi*sinSqrTh);
|
|---|
| [961] | 577 |
|
|---|
| [819] | 578 |
|
|---|
| 579 | // Determination of Theta
|
|---|
| 580 |
|
|---|
| [961] | 581 | // ---- MGP ---- Commented out the following 3 lines to avoid compilation
|
|---|
| 582 | // warnings (unused variables)
|
|---|
| 583 | // G4double thetaProbability;
|
|---|
| [819] | 584 | G4double theta;
|
|---|
| [961] | 585 | // G4double a, b;
|
|---|
| 586 | // G4double cosTheta;
|
|---|
| [819] | 587 |
|
|---|
| [961] | 588 | /*
|
|---|
| 589 |
|
|---|
| 590 | depaola method
|
|---|
| 591 |
|
|---|
| [819] | 592 | do
|
|---|
| [961] | 593 | {
|
|---|
| [819] | 594 | rand1 = G4UniformRand();
|
|---|
| 595 | rand2 = G4UniformRand();
|
|---|
| 596 | thetaProbability=0.;
|
|---|
| 597 | theta = twopi*rand1;
|
|---|
| 598 | a = 4*normalisation*normalisation;
|
|---|
| 599 | b = (epsilon + 1/epsilon) - 2;
|
|---|
| 600 | thetaProbability = (b + a*std::cos(theta)*std::cos(theta))/(a+b);
|
|---|
| 601 | cosTheta = std::cos(theta);
|
|---|
| 602 | }
|
|---|
| 603 | while ( rand2 > thetaProbability );
|
|---|
| 604 |
|
|---|
| 605 | G4double cosBeta = cosTheta;
|
|---|
| [961] | 606 |
|
|---|
| 607 | */
|
|---|
| 608 |
|
|---|
| 609 |
|
|---|
| 610 | // Dan Xu method (IEEE TNS, 52, 1160 (2005))
|
|---|
| 611 |
|
|---|
| 612 | rand1 = G4UniformRand();
|
|---|
| 613 | rand2 = G4UniformRand();
|
|---|
| 614 |
|
|---|
| 615 | if (rand1<(epsilon+1.0/epsilon-2)/(2.0*(epsilon+1.0/epsilon)-4.0*sinSqrTh*cosSqrPhi))
|
|---|
| 616 | {
|
|---|
| 617 | if (rand2<0.5)
|
|---|
| 618 | theta = pi/2.0;
|
|---|
| 619 | else
|
|---|
| 620 | theta = 3.0*pi/2.0;
|
|---|
| 621 | }
|
|---|
| 622 | else
|
|---|
| 623 | {
|
|---|
| 624 | if (rand2<0.5)
|
|---|
| 625 | theta = 0;
|
|---|
| 626 | else
|
|---|
| 627 | theta = pi;
|
|---|
| 628 | }
|
|---|
| 629 | G4double cosBeta = std::cos(theta);
|
|---|
| [819] | 630 | G4double sinBeta = std::sqrt(1-cosBeta*cosBeta);
|
|---|
| 631 |
|
|---|
| 632 | G4ThreeVector gammaPolarization1;
|
|---|
| 633 |
|
|---|
| 634 | G4double xParallel = normalisation*cosBeta;
|
|---|
| 635 | G4double yParallel = -(sinSqrTh*cosPhi*sinPhi)*cosBeta/normalisation;
|
|---|
| 636 | G4double zParallel = -(costheta*sinTheta*cosPhi)*cosBeta/normalisation;
|
|---|
| 637 | G4double xPerpendicular = 0.;
|
|---|
| 638 | G4double yPerpendicular = (costheta)*sinBeta/normalisation;
|
|---|
| 639 | G4double zPerpendicular = -(sinTheta*sinPhi)*sinBeta/normalisation;
|
|---|
| 640 |
|
|---|
| 641 | G4double xTotal = (xParallel + xPerpendicular);
|
|---|
| 642 | G4double yTotal = (yParallel + yPerpendicular);
|
|---|
| 643 | G4double zTotal = (zParallel + zPerpendicular);
|
|---|
| 644 |
|
|---|
| 645 | gammaPolarization1.setX(xTotal);
|
|---|
| 646 | gammaPolarization1.setY(yTotal);
|
|---|
| 647 | gammaPolarization1.setZ(zTotal);
|
|---|
| 648 |
|
|---|
| 649 | return gammaPolarization1;
|
|---|
| 650 |
|
|---|
| 651 | }
|
|---|
| 652 |
|
|---|
| 653 |
|
|---|
| 654 | void G4LowEnergyPolarizedCompton::SystemOfRefChange(G4ThreeVector& direction0,
|
|---|
| 655 | G4ThreeVector& direction1,
|
|---|
| 656 | G4ThreeVector& polarization0,
|
|---|
| 657 | G4ThreeVector& polarization1)
|
|---|
| 658 | {
|
|---|
| 659 | // direction0 is the original photon direction ---> z
|
|---|
| 660 | // polarization0 is the original photon polarization ---> x
|
|---|
| 661 | // need to specify y axis in the real reference frame ---> y
|
|---|
| 662 | G4ThreeVector Axis_Z0 = direction0.unit();
|
|---|
| 663 | G4ThreeVector Axis_X0 = polarization0.unit();
|
|---|
| 664 | G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed;
|
|---|
| 665 |
|
|---|
| 666 | G4double direction_x = direction1.getX();
|
|---|
| 667 | G4double direction_y = direction1.getY();
|
|---|
| 668 | G4double direction_z = direction1.getZ();
|
|---|
| 669 |
|
|---|
| 670 | direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit();
|
|---|
| 671 | G4double polarization_x = polarization1.getX();
|
|---|
| 672 | G4double polarization_y = polarization1.getY();
|
|---|
| 673 | G4double polarization_z = polarization1.getZ();
|
|---|
| 674 |
|
|---|
| 675 | polarization1 = (polarization_x*Axis_X0 + polarization_y*Axis_Y0 + polarization_z*Axis_Z0).unit();
|
|---|
| 676 |
|
|---|
| 677 | }
|
|---|
| 678 |
|
|---|
| 679 |
|
|---|
| 680 | G4bool G4LowEnergyPolarizedCompton::IsApplicable(const G4ParticleDefinition& particle)
|
|---|
| 681 | {
|
|---|
| 682 | return ( &particle == G4Gamma::Gamma() );
|
|---|
| 683 | }
|
|---|
| 684 |
|
|---|
| 685 |
|
|---|
| 686 | G4double G4LowEnergyPolarizedCompton::GetMeanFreePath(const G4Track& track,
|
|---|
| 687 | G4double,
|
|---|
| 688 | G4ForceCondition*)
|
|---|
| 689 | {
|
|---|
| 690 | const G4DynamicParticle* photon = track.GetDynamicParticle();
|
|---|
| 691 | G4double energy = photon->GetKineticEnergy();
|
|---|
| 692 | const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple();
|
|---|
| 693 | size_t materialIndex = couple->GetIndex();
|
|---|
| 694 | G4double meanFreePath;
|
|---|
| 695 | if (energy > highEnergyLimit) meanFreePath = meanFreePathTable->FindValue(highEnergyLimit,materialIndex);
|
|---|
| 696 | else if (energy < lowEnergyLimit) meanFreePath = DBL_MAX;
|
|---|
| 697 | else meanFreePath = meanFreePathTable->FindValue(energy,materialIndex);
|
|---|
| 698 | return meanFreePath;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 |
|
|---|
| 702 |
|
|---|
| 703 |
|
|---|
| 704 |
|
|---|
| 705 |
|
|---|
| 706 |
|
|---|
| 707 |
|
|---|
| 708 |
|
|---|
| 709 |
|
|---|
| 710 |
|
|---|
| 711 |
|
|---|
| 712 |
|
|---|
| 713 |
|
|---|