source: trunk/source/processes/electromagnetic/lowenergy/src/G4PenelopeGammaConversion.cc @ 991

Last change on this file since 991 was 819, checked in by garnier, 16 years ago

import all except CVS

File size: 12.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// --------------------------------------------------------------------
27//
28//
29//
30// --------------------------------------------------------------
31//
32// Author: L.Pandola
33// History:
34// --------
35// 02 Dec 2002 L.Pandola    1st implementation
36// 12 Feb 2003   MG Pia     Migration to "cuts per region"
37// 10 Mar 2003 V.Ivanchenko Remove CutPerMaterial warning
38// 13 Mar 2003 L.Pandola    Code "cleaned"
39// 25 Mar 2003 L.Pandola    Changed the name of the database file to read
40// 24 Apr 2003 V.Ivanchenko Cut per region mfpt
41// 17 Mar 2004 L.Pandola    Removed unnecessary calls to std::pow(a,b)
42// --------------------------------------------------------------
43
44#include "G4PenelopeGammaConversion.hh"
45
46#include "Randomize.hh"
47#include "G4ParticleDefinition.hh"
48#include "G4Track.hh"
49#include "G4Step.hh"
50#include "G4ForceCondition.hh"
51#include "G4Gamma.hh"
52#include "G4Electron.hh"
53#include "G4DynamicParticle.hh"
54#include "G4VParticleChange.hh"
55#include "G4ThreeVector.hh"
56#include "G4Positron.hh"
57#include "G4IonisParamElm.hh"
58#include "G4Material.hh"
59#include "G4VCrossSectionHandler.hh"
60#include "G4CrossSectionHandler.hh"
61#include "G4VEMDataSet.hh"
62#include "G4VDataSetAlgorithm.hh"
63#include "G4LogLogInterpolation.hh"
64#include "G4VRangeTest.hh"
65#include "G4RangeTest.hh"
66#include "G4MaterialCutsCouple.hh"
67
68
69G4PenelopeGammaConversion::G4PenelopeGammaConversion(const G4String& processName)
70  : G4VDiscreteProcess(processName),   
71    lowEnergyLimit(1.022000*MeV),
72    highEnergyLimit(100*GeV),
73    intrinsicLowEnergyLimit(1.022000*MeV),
74    intrinsicHighEnergyLimit(100*GeV),
75    smallEnergy(1.1*MeV)
76
77{
78  if (lowEnergyLimit < intrinsicLowEnergyLimit || 
79      highEnergyLimit > intrinsicHighEnergyLimit)
80    {
81      G4Exception("G4PenelopeGammaConversion::G4PenelopeGammaConversion - energy limit outside intrinsic process validity range");
82    }
83
84  // The following pointer is owned by G4DataHandler 
85  crossSectionHandler = new G4CrossSectionHandler();
86  // Log log interpolation (default)
87  crossSectionHandler->Initialise(0,1.0220*MeV,100.*GeV,400);
88  meanFreePathTable = 0;
89  rangeTest = new G4RangeTest;
90
91   if (verboseLevel > 0) 
92     {
93       G4cout << GetProcessName() << " is created " << G4endl
94              << "Energy range: " 
95              << lowEnergyLimit / MeV << " MeV - "
96              << highEnergyLimit / GeV << " GeV" 
97              << G4endl;
98     }
99}
100 
101G4PenelopeGammaConversion::~G4PenelopeGammaConversion()
102{
103  delete meanFreePathTable;
104  delete crossSectionHandler;
105  delete rangeTest;
106}
107
108void G4PenelopeGammaConversion::BuildPhysicsTable(const G4ParticleDefinition& )
109{
110
111  crossSectionHandler->Clear();
112  G4String crossSectionFile = "penelope/pp-cs-pen-";
113  crossSectionHandler->LoadData(crossSectionFile);
114  delete meanFreePathTable;
115  meanFreePathTable = crossSectionHandler->BuildMeanFreePathForMaterials();
116}
117
118G4VParticleChange* G4PenelopeGammaConversion::PostStepDoIt(const G4Track& aTrack,
119                                                            const G4Step& aStep)
120{
121  aParticleChange.Initialize(aTrack);
122
123  const G4MaterialCutsCouple* couple = aTrack.GetMaterialCutsCouple();
124 
125  const G4DynamicParticle* incidentPhoton = aTrack.GetDynamicParticle();
126  G4double photonEnergy = incidentPhoton->GetKineticEnergy();
127  G4ParticleMomentum photonDirection = incidentPhoton->GetMomentumDirection();
128
129  G4double eps ;
130  G4double eki = electron_mass_c2 / photonEnergy ;
131
132  // Do it fast if photon energy < 1.1 MeV
133  if (photonEnergy < smallEnergy )
134    {
135      eps = eki + (1-2*eki) * G4UniformRand();
136    }
137  else
138    {
139      // Select randomly one element in the current material
140      const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
141
142      if (element == 0)
143        {
144          G4cout << "G4PenelopeGammaConversion::PostStepDoIt - element = 0" << G4endl;
145        }
146      G4IonisParamElm* ionisation = element->GetIonisation();
147      if (ionisation == 0) 
148        {
149          G4cout << "G4PenelopeGammaConversion::PostStepDoIt - ionisation = 0" << G4endl;
150        }
151     
152      //Low energy and Coulomb corrections
153      G4double Z=ionisation->GetZ(); 
154      G4double ZAlpha = Z*fine_structure_const;
155      G4double ScreenRadius = GetScreeningRadius(Z);
156      G4double funct1=0,g0=0;
157      G4double g1min=0,g2min=0;
158      funct1 = 4.0*std::log(ScreenRadius);
159      g0 = funct1-4*CoulombCorrection(ZAlpha)+LowEnergyCorrection(ZAlpha,eki); 
160      G4double bmin = 2*eki*ScreenRadius;
161      g1min=g0+ScreenFunction(bmin,1);
162      g2min=g0+ScreenFunction(bmin,2);
163      G4double xr,a1,p1;
164      xr=0.5-eki;
165      a1=(2.0/3.0)*g1min*xr*xr;
166      p1=a1/(a1+g2min);
167
168      //Random sampling of eps
169      G4double rand1,rand2,rand3,b;
170      G4double g1;
171   
172      do{
173        rand1 = G4UniformRand();
174        if (rand1 < p1) {
175          rand2 = 2.0*G4UniformRand()-1.0;
176          if (rand2 < 0) {
177            eps = 0.5 - xr*std::pow(std::abs(rand2),(1./3.));
178          }
179          else
180            {
181              eps = 0.5 + xr*std::pow(rand2,(1./3.));
182            }
183          b = (eki*ScreenRadius)/(2*eps*(1.0-eps));
184          g1 = g0+ScreenFunction(b,1);
185          if (g1 < 0) g1=0;
186          rand3 = G4UniformRand()*g1min;
187        }
188        else
189          {
190            eps = eki+2.0*xr*G4UniformRand();
191            b = (eki*ScreenRadius)/(2*eps*(1.0-eps));
192            g1 = g0+ScreenFunction(b,2); 
193            if (g1 < 0) g1=0; 
194            rand3 = G4UniformRand()*g2min;
195          }       
196      } while (rand3>g1);
197    } //End of eps sampling
198
199  G4double electronTotEnergy;
200  G4double positronTotEnergy;
201
202  electronTotEnergy = eps*photonEnergy;
203  positronTotEnergy = (1.0-eps)*photonEnergy;
204 
205  // Scattered electron (positron) angles. ( Z - axis along the parent photon)
206
207  //electron kinematics
208  G4double costheta_el,costheta_po;
209  G4double phi_el,phi_po;
210  G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ; 
211  costheta_el = G4UniformRand()*2.0-1.0;
212  G4double kk = std::sqrt(electronKineEnergy*(electronKineEnergy+2.*electron_mass_c2));
213  costheta_el = (costheta_el*electronTotEnergy+kk)/(electronTotEnergy+costheta_el*kk);
214  phi_el  = twopi * G4UniformRand() ;
215  G4double dirX_el = std::sqrt(1.-costheta_el*costheta_el) * std::cos(phi_el);
216  G4double dirY_el = std::sqrt(1.-costheta_el*costheta_el) * std::sin(phi_el);
217  G4double dirZ_el = costheta_el;
218
219  //positron kinematics
220  G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
221  costheta_po = G4UniformRand()*2.0-1.0;
222  kk = std::sqrt(positronKineEnergy*(positronKineEnergy+2.*electron_mass_c2));
223  costheta_po = (costheta_po*positronTotEnergy+kk)/(positronTotEnergy+costheta_po*kk);
224  phi_po  = twopi * G4UniformRand() ;
225  G4double dirX_po = std::sqrt(1.-costheta_po*costheta_po) * std::cos(phi_po);
226  G4double dirY_po = std::sqrt(1.-costheta_po*costheta_po) * std::sin(phi_po);
227  G4double dirZ_po = costheta_po;
228
229// Kinematics of the created pair:
230// the electron and positron are assumed to have a symetric angular
231// distribution with respect to the Z axis along the parent photon
232
233  G4double localEnergyDeposit = 0. ;
234
235  aParticleChange.SetNumberOfSecondaries(2) ;
236
237
238  // Generate the electron only if with large enough range w.r.t. cuts and safety
239
240  G4double safety = aStep.GetPostStepPoint()->GetSafety();
241
242  if (rangeTest->Escape(G4Electron::Electron(),couple,electronKineEnergy,safety))
243    {
244      G4ThreeVector electronDirection ( dirX_el, dirY_el, dirZ_el);
245      electronDirection.rotateUz(photonDirection);
246      G4DynamicParticle* particle1 = new G4DynamicParticle (G4Electron::Electron(),
247                                                            electronDirection,
248                                                            electronKineEnergy);
249      aParticleChange.AddSecondary(particle1) ;
250    }
251  else
252    {
253      localEnergyDeposit += electronKineEnergy ;
254    }
255
256
257  if (! (rangeTest->Escape(G4Positron::Positron(),couple,positronKineEnergy,safety)))
258    {
259      localEnergyDeposit += positronKineEnergy ;
260      positronKineEnergy = 0. ;
261    }
262  G4ThreeVector positronDirection(dirX_po,dirY_po,dirZ_po);
263  positronDirection.rotateUz(photonDirection);
264
265  // Create G4DynamicParticle object for the particle2
266  G4DynamicParticle* particle2 = new G4DynamicParticle(G4Positron::Positron(),
267                                                       positronDirection, positronKineEnergy);
268  aParticleChange.AddSecondary(particle2) ;
269
270  aParticleChange.ProposeLocalEnergyDeposit(localEnergyDeposit) ;
271
272  // Kill the incident photon
273  aParticleChange.ProposeMomentumDirection(0.,0.,0.) ;
274  aParticleChange.ProposeEnergy(0.) ;
275  aParticleChange.ProposeTrackStatus(fStopAndKill) ;
276
277  //  Reset NbOfInteractionLengthLeft and return aParticleChange
278  return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
279}
280
281G4bool G4PenelopeGammaConversion::IsApplicable(const G4ParticleDefinition& particle)
282{
283  return ( &particle == G4Gamma::Gamma() );
284}
285
286G4double G4PenelopeGammaConversion::GetMeanFreePath(const G4Track& track,
287                                                    G4double, // previousStepSize
288                                                    G4ForceCondition*)
289{
290  const G4DynamicParticle* photon = track.GetDynamicParticle();
291  G4double energy = photon->GetKineticEnergy();
292  const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple();
293  size_t materialIndex = couple->GetIndex();
294
295  G4double meanFreePath;
296  if (energy > highEnergyLimit) meanFreePath = meanFreePathTable->FindValue(highEnergyLimit,materialIndex);
297  else if (energy < lowEnergyLimit) meanFreePath = DBL_MAX;
298  else meanFreePath = meanFreePathTable->FindValue(energy,materialIndex);
299  return meanFreePath;
300}
301
302G4double G4PenelopeGammaConversion::ScreenFunction(G4double b,G4int icase)
303{
304  G4double bsquare=b*b;
305  G4double a0,f1,f2,g1,g2;
306  f1=2.0-2*std::log(1+bsquare);
307  f2=f1-(2.0/3.0);
308  if (b < 1.0e-10)
309    {
310      f1=f1-twopi*b;
311    }
312  else
313    {
314      a0 = 4*b*std::atan(1.0/b);
315      f1 = f1 - a0;
316      f2 = f2+2*bsquare*(4.0-a0-3*std::log((1+bsquare)/bsquare));
317    }
318  g1=0.5*(3*f1-f2);
319  g2=0.25*(3*f1+f2);
320  if (icase==1) {
321   return g1;
322  }
323  else
324    {
325      return g2;
326    }
327}
328     
329G4double G4PenelopeGammaConversion::CoulombCorrection(G4double a)
330{
331  G4double fc=0;
332  G4double b[7] = {0.202059,-0.03693,0.00835,-0.00201,0.00049,-0.00012,0.00003};
333  G4double aSquared = a*a;
334  G4double aFourth = aSquared*aSquared;
335  G4double aEighth = aFourth*aFourth;
336
337  fc = ((1.0/(1.0+a*a))+b[0]+b[1]*aSquared+b[2]*aFourth+b[3]*(aSquared*aFourth)+
338        b[4]*aEighth+b[5]*(aEighth*aSquared)+b[6]*(aEighth*aFourth));
339  fc=aSquared*fc;
340  return fc;
341}
342
343G4double G4PenelopeGammaConversion::LowEnergyCorrection(G4double a,G4double eki)
344{
345  G4double f0=0,t=0;
346  G4double b[12] = {-1.744,-12.10,11.18,8.523,73.26,-41.41,-13.52,-121.1,94.41,8.946,62.05,-63.41};
347  t=std::sqrt(2.0*eki);
348  G4double tSq = t*t;
349  f0=(b[0]+b[1]*a+b[2]*a*a)*t+(b[3]+b[4]*a+b[5]*a*a)*(tSq)+(b[6]+b[7]*a+b[8]*a*a)*(tSq*t)+
350    (b[9]+b[10]*a+b[11]*a*a)*(tSq*tSq);
351  return f0;
352}
353
354G4double G4PenelopeGammaConversion::GetScreeningRadius(G4double Z) 
355{
356  char* path = getenv("G4LEDATA");
357  if (!path)
358    {
359      G4String excep = "G4PenelopeGammaConversion - G4LEDATA environment variable not set!";
360      G4Exception(excep);
361    }
362  G4String pathString(path);
363  G4String pathFile = pathString + "/penelope/pp-pen.dat";
364  std::ifstream file(pathFile);
365  std::filebuf* lsdp = file.rdbuf();
366 
367  if (!(lsdp->is_open()))
368    {
369      G4String excep = "G4PenelopeGammaConversion - data file " + pathFile + "not found!";
370      G4Exception(excep);
371    }
372  G4int k;
373  G4double a1,a2;
374  while(!file.eof()) {
375    file >> k >> a1 >> a2;
376    if ((G4double) k == Z)
377      {
378        return a1;
379      }
380  } 
381  G4String excep = "G4PenelopeGammaConversion - Screening Radius for not found in the data file";
382  G4Exception(excep);
383  return 0;
384}
Note: See TracBrowser for help on using the repository browser.