// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4PenelopeGammaConversionModel.cc,v 1.2 2008/12/04 14:09:36 pandola Exp $ // GEANT4 tag $Name: geant4-09-02 $ // // Author: Luciano Pandola // // History: // -------- // 06 Oct 2008 L Pandola Migration from process to model // #include "G4PenelopeGammaConversionModel.hh" #include "G4ParticleDefinition.hh" #include "G4MaterialCutsCouple.hh" #include "G4ProductionCutsTable.hh" #include "G4DynamicParticle.hh" #include "G4Element.hh" #include "G4Gamma.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4CrossSectionHandler.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeGammaConversionModel::G4PenelopeGammaConversionModel(const G4ParticleDefinition*, const G4String& nam) :G4VEmModel(nam),fTheScreeningRadii(0),crossSectionHandler(0),isInitialised(false) { fIntrinsicLowEnergyLimit = 2.0*electron_mass_c2; fIntrinsicHighEnergyLimit = 100.0*GeV; fSmallEnergy = 1.1*MeV; SetLowEnergyLimit(fIntrinsicLowEnergyLimit); SetHighEnergyLimit(fIntrinsicHighEnergyLimit); // verboseLevel= 0; // Verbosity scale: // 0 = nothing // 1 = warning for energy non-conservation // 2 = details of energy budget // 3 = calculation of cross sections, file openings, sampling of atoms // 4 = entering in methods } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeGammaConversionModel::~G4PenelopeGammaConversionModel() { if (crossSectionHandler) delete crossSectionHandler; if (fTheScreeningRadii) delete fTheScreeningRadii; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeGammaConversionModel::Initialise(const G4ParticleDefinition*, const G4DataVector& ) { if (verboseLevel > 3) G4cout << "Calling G4PenelopeGammaConversionModel::Initialise()" << G4endl; //Delete the old cross section handler, if necessary if (crossSectionHandler) { crossSectionHandler->Clear(); delete crossSectionHandler; } //Check energy limits if (LowEnergyLimit() < fIntrinsicLowEnergyLimit) { G4cout << "G4PenelopeGammaConversionModel: low energy limit increased from " << LowEnergyLimit()/eV << " eV to " << fIntrinsicLowEnergyLimit/eV << " eV" << G4endl; SetLowEnergyLimit(fIntrinsicLowEnergyLimit); } if (HighEnergyLimit() > fIntrinsicHighEnergyLimit) { G4cout << "G4PenelopeGammaConversionModel: high energy limit decreased from " << HighEnergyLimit()/GeV << " GeV to " << fIntrinsicHighEnergyLimit/GeV << " GeV" << G4endl; SetHighEnergyLimit(fIntrinsicHighEnergyLimit); } //Re-initialize cross section handler crossSectionHandler = new G4CrossSectionHandler(); crossSectionHandler->Initialise(0,LowEnergyLimit(),HighEnergyLimit(),400); crossSectionHandler->Clear(); G4String crossSectionFile = "penelope/pp-cs-pen-"; crossSectionHandler->LoadData(crossSectionFile); //This is used to retrieve cross section values later on crossSectionHandler->BuildMeanFreePathForMaterials(); if (verboseLevel > 2) G4cout << "Loaded cross section files for PenelopeGammaConversion" << G4endl; G4cout << "Penelope Gamma Conversion model is initialized " << G4endl << "Energy range: " << LowEnergyLimit() / MeV << " MeV - " << HighEnergyLimit() / GeV << " GeV" << G4endl; if(isInitialised) return; if(pParticleChange) fParticleChange = reinterpret_cast(pParticleChange); else fParticleChange = new G4ParticleChangeForGamma(); isInitialised = true; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeGammaConversionModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition*, G4double energy, G4double Z, G4double, G4double, G4double) { // // Penelope model. // Cross section (including triplet production) read from database and managed // through the G4CrossSectionHandler utility. Cross section data are from // M.J. Berger and J.H. Hubbel (XCOM), Report NBSIR 887-3598 // if (verboseLevel > 3) G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopePhotoElectricModel" << G4endl; G4int iZ = (G4int) Z; if (!crossSectionHandler) { G4cout << "G4PenelopeGammaConversionModel::ComputeCrossSectionPerAtom" << G4endl; G4cout << "The cross section handler is not correctly initialized" << G4endl; G4Exception(); } G4double cs = crossSectionHandler->FindValue(iZ,energy); if (verboseLevel > 2) G4cout << "Gamma conversion cross section at " << energy/MeV << " MeV for Z=" << Z << " = " << cs/barn << " barn" << G4endl; return cs; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeGammaConversionModel::SampleSecondaries(std::vector* fvect, const G4MaterialCutsCouple* couple, const G4DynamicParticle* aDynamicGamma, G4double, G4double) { // // Penelope model. // Final state is sampled according to the Bethe-Heitler model with Coulomb // corrections, according to the semi-empirical model of // J. Baro' et al., Radiat. Phys. Chem. 44 (1994) 531. // // The model uses the high energy Coulomb correction from // H. Davies et al., Phys. Rev. 93 (1954) 788 // and atomic screening radii tabulated from // J.H. Hubbel et al., J. Phys. Chem. Ref. Data 9 (1980) 1023 // for Z= 1 to 92. This managed in this model by the method // GetScreeningRadius(). // if (verboseLevel > 3) G4cout << "Calling SamplingSecondaries() of G4PenelopeGammaConversionModel" << G4endl; G4double photonEnergy = aDynamicGamma->GetKineticEnergy(); if (photonEnergy <= LowEnergyLimit()) { fParticleChange->ProposeTrackStatus(fStopAndKill); fParticleChange->SetProposedKineticEnergy(0.); fParticleChange->ProposeLocalEnergyDeposit(photonEnergy); return ; } G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection(); G4double eps ; G4double eki = electron_mass_c2 / photonEnergy ; // Do it fast if photon energy < 1.1 MeV if (photonEnergy < fSmallEnergy ) { eps = eki + (1-2*eki) * G4UniformRand(); } else { // Select randomly one element in the current material if (verboseLevel > 2) G4cout << "Going to select element in " << couple->GetMaterial()->GetName() << G4endl; //use crossSectionHandler instead of G4EmElementSelector because in this case //the dimension of the table is equal to the dimension of the database //(less interpolation errors) G4int Z_int = crossSectionHandler->SelectRandomAtom(couple,photonEnergy); if (verboseLevel > 2) G4cout << "Selected Z = " << Z_int << G4endl; //Low energy and Coulomb corrections G4double Z=(G4double) Z_int; G4double ZAlpha = Z*fine_structure_const; G4double ScreenRadius = GetScreeningRadius(Z); G4double funct1=0,g0=0; G4double g1min=0,g2min=0; funct1 = 4.0*std::log(ScreenRadius); g0 = funct1-4*CoulombCorrection(ZAlpha)+LowEnergyCorrection(ZAlpha,eki); G4double bmin = 2*eki*ScreenRadius; std::vector ScreenFunctionValues = ScreenFunction(bmin); if (ScreenFunctionValues.size() != 2) { G4cout << "G4PenelopeGammaConversionModel::SampleSecondaries" << G4endl; G4cout << "ScreenFunction did not return 2 values! Something wrong! " << G4endl; G4Exception(); } g1min=g0+ScreenFunctionValues[0]; g2min=g0+ScreenFunctionValues[1]; G4double xr,a1,p1; xr=0.5-eki; a1=(2.0/3.0)*g1min*xr*xr; p1=a1/(a1+g2min); //Random sampling of eps G4double rand1,rand2,rand3,b; G4double g1; do{ rand1 = G4UniformRand(); if (rand1 < p1) { rand2 = 2.0*G4UniformRand()-1.0; if (rand2 < 0) { eps = 0.5 - xr*std::pow(std::abs(rand2),(1./3.)); } else { eps = 0.5 + xr*std::pow(rand2,(1./3.)); } b = (eki*ScreenRadius)/(2*eps*(1.0-eps)); std::vector ScreenFunctionSampling = ScreenFunction(b); g1 = g0+ScreenFunctionSampling[0]; if (g1 < 0) g1=0; rand3 = G4UniformRand()*g1min; } else { eps = eki+2.0*xr*G4UniformRand(); b = (eki*ScreenRadius)/(2*eps*(1.0-eps)); std::vector ScreenFunctionSampling = ScreenFunction(b); g1 = g0+ScreenFunctionSampling[1]; if (g1 < 0) g1=0; rand3 = G4UniformRand()*g2min; } } while (rand3>g1); } //End of eps sampling G4double electronTotEnergy = eps*photonEnergy; G4double positronTotEnergy = (1.0-eps)*photonEnergy; // Scattered electron (positron) angles. ( Z - axis along the parent photon) //electron kinematics G4double costheta_el,costheta_po; G4double phi_el,phi_po; G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ; costheta_el = G4UniformRand()*2.0-1.0; G4double kk = std::sqrt(electronKineEnergy*(electronKineEnergy+2.*electron_mass_c2)); costheta_el = (costheta_el*electronTotEnergy+kk)/(electronTotEnergy+costheta_el*kk); phi_el = twopi * G4UniformRand() ; G4double dirX_el = std::sqrt(1.-costheta_el*costheta_el) * std::cos(phi_el); G4double dirY_el = std::sqrt(1.-costheta_el*costheta_el) * std::sin(phi_el); G4double dirZ_el = costheta_el; //positron kinematics G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ; costheta_po = G4UniformRand()*2.0-1.0; kk = std::sqrt(positronKineEnergy*(positronKineEnergy+2.*electron_mass_c2)); costheta_po = (costheta_po*positronTotEnergy+kk)/(positronTotEnergy+costheta_po*kk); phi_po = twopi * G4UniformRand() ; G4double dirX_po = std::sqrt(1.-costheta_po*costheta_po) * std::cos(phi_po); G4double dirY_po = std::sqrt(1.-costheta_po*costheta_po) * std::sin(phi_po); G4double dirZ_po = costheta_po; // Kinematics of the created pair: // the electron and positron are assumed to have a symetric angular // distribution with respect to the Z axis along the parent photon G4double localEnergyDeposit = 0. ; //Generate explicitely the electron in the pair, only if it is > threshold const G4ProductionCutsTable* theCoupleTable= G4ProductionCutsTable::GetProductionCutsTable(); size_t indx = couple->GetIndex(); G4double cutE = (*(theCoupleTable->GetEnergyCutsVector(1)))[indx]; //G4double cutP = (*(theCoupleTable->GetEnergyCutsVector(2)))[indx]; if (electronKineEnergy > cutE) { G4ThreeVector electronDirection ( dirX_el, dirY_el, dirZ_el); electronDirection.rotateUz(photonDirection); G4DynamicParticle* electron = new G4DynamicParticle (G4Electron::Electron(), electronDirection, electronKineEnergy); fvect->push_back(electron); } else { localEnergyDeposit += electronKineEnergy; electronKineEnergy = 0; } //Generate the positron. Real particle in any case, because it will annihilate. If below //threshold, produce it at rest if (positronKineEnergy < cutE) { localEnergyDeposit += positronKineEnergy; positronKineEnergy = 0; //produce it at rest } G4ThreeVector positronDirection(dirX_po,dirY_po,dirZ_po); positronDirection.rotateUz(photonDirection); G4DynamicParticle* positron = new G4DynamicParticle(G4Positron::Positron(), positronDirection, positronKineEnergy); fvect->push_back(positron); //Update the status of the primary gamma (kill it) fParticleChange->SetProposedKineticEnergy(0.); fParticleChange->ProposeLocalEnergyDeposit(localEnergyDeposit); fParticleChange->ProposeTrackStatus(fStopAndKill); if (verboseLevel > 1) { G4cout << "-----------------------------------------------------------" << G4endl; G4cout << "Energy balance from G4PenelopeGammaConversion" << G4endl; G4cout << "Incoming photon energy: " << photonEnergy/keV << " keV" << G4endl; G4cout << "-----------------------------------------------------------" << G4endl; if (electronKineEnergy) G4cout << "Electron (explicitely produced) " << electronKineEnergy/keV << " keV" << G4endl; if (positronKineEnergy) G4cout << "Positron (not at rest) " << positronKineEnergy/keV << " keV" << G4endl; G4cout << "Rest masses of e+/- " << 2.0*electron_mass_c2/keV << " keV" << G4endl; if (localEnergyDeposit) G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl; G4cout << "Total final state: " << (electronKineEnergy+positronKineEnergy+ localEnergyDeposit+2.0*electron_mass_c2)/keV << " keV" << G4endl; G4cout << "-----------------------------------------------------------" << G4endl; } if (verboseLevel > 0) { G4double energyDiff = std::fabs(electronKineEnergy+positronKineEnergy+ localEnergyDeposit+2.0*electron_mass_c2-photonEnergy); if (energyDiff > 0.05*keV) G4cout << "Warning from G4PenelopeGammaConversion: problem with energy conservation: " << (electronKineEnergy+positronKineEnergy+ localEnergyDeposit+2.0*electron_mass_c2)/keV << " keV (final) vs. " << photonEnergy/keV << " keV (initial)" << G4endl; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... std::vector G4PenelopeGammaConversionModel::ScreenFunction(G4double b) { std::vector result; result.clear(); G4double bsquare=b*b; G4double a0,f1,f2; f1=2.0-2*std::log(1+bsquare); f2=f1-(2.0/3.0); if (b < 1.0e-10) { f1=f1-twopi*b; } else { a0 = 4*b*std::atan(1.0/b); f1 = f1 - a0; f2 = f2+2*bsquare*(4.0-a0-3*std::log((1+bsquare)/bsquare)); } result.push_back(0.5*(3*f1-f2)); result.push_back(0.25*(3*f1+f2)); return result; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeGammaConversionModel::GetScreeningRadius(G4double Z) { G4double result = 0; G4bool foundElement = false; G4int iZ = (G4int) Z; if (!fTheScreeningRadii) fTheScreeningRadii = new std::map; if (fTheScreeningRadii->count(iZ)) { //The element is already loaded: just return it result = fTheScreeningRadii->find(iZ)->second; return result; } else //retrieve all from file { char* path = getenv("G4LEDATA"); if (!path) { G4String excep = "G4PenelopeGammaConversionModel - G4LEDATA environment variable not set!"; G4Exception(excep); } G4String pathString(path); G4String pathFile = pathString + "/penelope/pp-pen.dat"; std::ifstream file(pathFile); if (!(file.is_open())) { G4String excep = "G4PenelopeGammaConversionModel - data file " + pathFile + "not found!"; G4Exception(excep); } G4int k; G4double a1,a2; while(!file.eof()) { file >> k >> a1 >> a2; fTheScreeningRadii->insert(std::make_pair(k,a1)); if ((G4double) k == Z) { result = a1; foundElement = true; } } file.close(); if (verboseLevel > 2) G4cout << "Read file pp-pen.dat" << G4endl; if (foundElement) return result; else { G4String excep = "G4PenelopeGammaConversionModel - Screening Radius for not found in the data file"; G4Exception(excep); return 0; } } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeGammaConversionModel::CoulombCorrection(G4double a) { G4double fc=0; G4double b[7] = {0.202059,-0.03693,0.00835,-0.00201,0.00049,-0.00012,0.00003}; G4double aSquared = a*a; G4double aFourth = aSquared*aSquared; G4double aEighth = aFourth*aFourth; fc = ((1.0/(1.0+a*a))+b[0]+b[1]*aSquared+b[2]*aFourth+b[3]*(aSquared*aFourth)+ b[4]*aEighth+b[5]*(aEighth*aSquared)+b[6]*(aEighth*aFourth)); fc=aSquared*fc; return fc; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeGammaConversionModel::LowEnergyCorrection(G4double a,G4double eki) { G4double f0=0,t=0; G4double b[12] = {-1.744,-12.10,11.18,8.523,73.26,-41.41,-13.52,-121.1,94.41,8.946,62.05,-63.41}; t=std::sqrt(2.0*eki); G4double tSq = t*t; f0=(b[0]+b[1]*a+b[2]*a*a)*t+(b[3]+b[4]*a+b[5]*a*a)*(tSq)+(b[6]+b[7]*a+b[8]*a*a)*(tSq*t)+ (b[9]+b[10]*a+b[11]*a*a)*(tSq*tSq); return f0; }