// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // Authors: Luciano Pandola (luciano.pandola at lngs.infn.it) // // History: // ----------- // // 03 Dec 2009 First working version, Luciano Pandola // 16 Feb 2010 Added methods to store also total Z and A for the // molecule, Luciano Pandola // 19 Feb 2010 Scale the Hartree factors in the Compton Oscillator // table by (1/fine_structure_const), since the models use // always the ratio (hartreeFactor/fine_structure_const) // 16 Mar 2010 Added methods to calculate and store mean exc energy // and plasma energy (used for Ionisation). L Pandola // 18 Mar 2010 Added method to retrieve number of atoms per // molecule. L. Pandola // // ------------------------------------------------------------------- #include "G4PenelopeOscillatorManager.hh" #include "G4Material.hh" #include "globals.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillatorManager::G4PenelopeOscillatorManager() : oscillatorStoreIonisation(0),oscillatorStoreCompton(0),atomicNumber(0), atomicMass(0),excitationEnergy(0),plasmaSquared(0),atomsPerMolecule(0) { fReadElementData = false; for (G4int i=0;i<5;i++) { for (G4int j=0;j<2000;j++) elementData[i][j] = 0.; } verbosityLevel = 0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillatorManager::~G4PenelopeOscillatorManager() { Clear(); delete instance; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::instance = 0; //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::GetOscillatorManager() { if (!instance) instance = new G4PenelopeOscillatorManager(); return instance; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeOscillatorManager::Clear() { if (verbosityLevel > 1) G4cout << " G4PenelopeOscillatorManager::Clear() - Clean Oscillator Tables" << G4endl; //Clean up OscillatorStoreIonisation std::map::iterator i; for (i=oscillatorStoreIonisation->begin();i != oscillatorStoreIonisation->end();i++) { G4PenelopeOscillatorTable* table = i->second; if (table) { for (size_t k=0;ksize();k++) //clean individual oscillators { if ((*table)[k]) delete ((*table)[k]); } delete table; } } delete oscillatorStoreIonisation; //Clean up OscillatorStoreCompton for (i=oscillatorStoreCompton->begin();i != oscillatorStoreCompton->end();i++) { G4PenelopeOscillatorTable* table = i->second; if (table) { for (size_t k=0;ksize();k++) //clean individual oscillators { if ((*table)[k]) delete ((*table)[k]); } delete table; } } delete oscillatorStoreCompton; if (atomicMass) delete atomicMass; if (atomicNumber) delete atomicNumber; if (excitationEnergy) delete excitationEnergy; if (plasmaSquared) delete plasmaSquared; if (atomsPerMolecule) delete atomsPerMolecule; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeOscillatorManager::Dump(const G4Material* material) { G4PenelopeOscillatorTable* theTable = GetOscillatorTableIonisation(material); if (!theTable) { G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl; G4cout << "Problem in retrieving the Ionisation Oscillator Table for " << material->GetName() << G4endl; return; } G4cout << "*********************************************************************" << G4endl; G4cout << " Penelope Oscillator Table Ionisation for " << material->GetName() << G4endl; G4cout << "*********************************************************************" << G4endl; G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl; G4cout << "*********************************************************************" << G4endl; if (theTable->size() < 10) for (size_t k=0;ksize();k++) { G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() << " Shell Flag = " << (*theTable)[k]->GetShellFlag() << " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl; G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl; G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl; G4cout << "Resonance energy = " << (*theTable)[k]->GetResonanceEnergy()/eV << " eV" << G4endl; G4cout << "Cufoff resonance energy = " << (*theTable)[k]->GetCutoffRecoilResonantEnergy()/eV << " eV" << G4endl; G4cout << "*********************************************************************" << G4endl; } for (size_t k=0;ksize();k++) { G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " << (*theTable)[k]->GetIonisationEnergy()/eV << " " << (*theTable)[k]->GetResonanceEnergy()/eV << " " << (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " << (*theTable)[k]->GetParentShellID() << G4endl; } G4cout << "*********************************************************************" << G4endl; //Compton table theTable = GetOscillatorTableCompton(material); if (!theTable) { G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl; G4cout << "Problem in retrieving the Compton Oscillator Table for " << material->GetName() << G4endl; return; } G4cout << "*********************************************************************" << G4endl; G4cout << " Penelope Oscillator Table Compton for " << material->GetName() << G4endl; G4cout << "*********************************************************************" << G4endl; G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl; G4cout << "*********************************************************************" << G4endl; if (theTable->size() < 10) for (size_t k=0;ksize();k++) { G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() << " Shell Flag = " << (*theTable)[k]->GetShellFlag() << " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl; G4cout << "Compton index = " << (*theTable)[k]->GetHartreeFactor() << G4endl; G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl; G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl; G4cout << "*********************************************************************" << G4endl; } for (size_t k=0;ksize();k++) { G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " << (*theTable)[k]->GetIonisationEnergy()/eV << " " << (*theTable)[k]->GetHartreeFactor() << " " << (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " << (*theTable)[k]->GetParentShellID() << G4endl; } G4cout << "*********************************************************************" << G4endl; //just to test it //Clear(); return; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeOscillatorManager::CheckForTablesCreated() { //Tables should be created at the same time, since they are both filled //simultaneously if (!oscillatorStoreIonisation) { oscillatorStoreIonisation = new std::map; if (!fReadElementData) ReadElementData(); if (!oscillatorStoreIonisation) { //It should be ok now G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableIonisation() " << G4endl; G4cout << "Problem in allocating the Oscillator Store for Ionisation" << G4endl; G4cout << "Abort execution" << G4endl; G4Exception(); } } if (!oscillatorStoreCompton) { oscillatorStoreCompton = new std::map; if (!fReadElementData) ReadElementData(); if (!oscillatorStoreCompton) { //It should be ok now G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableCompton() " << G4endl; G4cout << "Problem in allocating the Oscillator Store for Compton" << G4endl; G4cout << "Abort execution" << G4endl; G4Exception(); } } if (!atomicNumber) atomicNumber = new std::map; if (!atomicMass) atomicMass = new std::map; if (!excitationEnergy) excitationEnergy = new std::map; if (!plasmaSquared) plasmaSquared = new std::map; if (!atomsPerMolecule) atomsPerMolecule = new std::map; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeOscillatorManager::GetTotalZ(const G4Material* mat) { // (1) First time, create oscillatorStores and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (atomicNumber->count(mat)) return atomicNumber->find(mat)->second; // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (atomicNumber->count(mat)) return atomicNumber->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetTotalZ() " << G4endl; G4cout << "Impossible to retrieve the total Z for " << mat->GetName() << G4endl; return 0; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeOscillatorManager::GetTotalA(const G4Material* mat) { // (1) First time, create oscillatorStores and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (atomicMass->count(mat)) return atomicMass->find(mat)->second; // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (atomicMass->count(mat)) return atomicMass->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetTotalA() " << G4endl; G4cout << "Impossible to retrieve the total A for " << mat->GetName() << G4endl; return 0; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillatorTable* G4PenelopeOscillatorManager::GetOscillatorTableIonisation(const G4Material* mat) { // (1) First time, create oscillatorStores and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (oscillatorStoreIonisation->count(mat)) { //Ok, it exists return oscillatorStoreIonisation->find(mat)->second; } // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (oscillatorStoreIonisation->count(mat)) return oscillatorStoreIonisation->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableIonisation() " << G4endl; G4cout << "Impossible to create ionisation oscillator table for " << mat->GetName() << G4endl; return NULL; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillator* G4PenelopeOscillatorManager::GetOscillatorIonisation(const G4Material* material, G4int index) { G4PenelopeOscillatorTable* theTable = GetOscillatorTableIonisation(material); if (((size_t)index) < theTable->size()) return (*theTable)[index]; else { G4cout << "WARNING: Ionisation table for material " << material->GetName() << " has " << theTable->size() << " oscillators" << G4endl; G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl; G4cout << "Returning null pointer" << G4endl; return NULL; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillatorTable* G4PenelopeOscillatorManager::GetOscillatorTableCompton(const G4Material* mat) { // (1) First time, create oscillatorStore and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (oscillatorStoreCompton->count(mat)) { //Ok, it exists return oscillatorStoreCompton->find(mat)->second; } // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (oscillatorStoreCompton->count(mat)) return oscillatorStoreCompton->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableCompton() " << G4endl; G4cout << "Impossible to create Compton oscillator table for " << mat->GetName() << G4endl; return NULL; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopeOscillator* G4PenelopeOscillatorManager::GetOscillatorCompton(const G4Material* material, G4int index) { G4PenelopeOscillatorTable* theTable = GetOscillatorTableCompton(material); if (((size_t)index) < theTable->size()) return (*theTable)[index]; else { G4cout << "WARNING: Compton table for material " << material->GetName() << " has " << theTable->size() << " oscillators" << G4endl; G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl; G4cout << "Returning null pointer" << G4endl; return NULL; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeOscillatorManager::BuildOscillatorTable(const G4Material* material) { //THIS CORRESPONDS TO THE ROUTINE PEMATW of PENELOPE G4double meanAtomExcitationEnergy[99] = {19.2*eV, 41.8*eV, 40.0*eV, 63.7*eV, 76.0*eV, 81.0*eV, 82.0*eV, 95.0*eV,115.0*eV,137.0*eV,149.0*eV,156.0*eV, 166.0*eV, 173.0*eV,173.0*eV,180.0*eV,174.0*eV,188.0*eV,190.0*eV,191.0*eV, 216.0*eV,233.0*eV,245.0*eV,257.0*eV,272.0*eV,286.0*eV,297.0*eV, 311.0*eV,322.0*eV,330.0*eV,334.0*eV,350.0*eV,347.0*eV,348.0*eV, 343.0*eV,352.0*eV,363.0*eV,366.0*eV,379.0*eV,393.0*eV,417.0*eV, 424.0*eV,428.0*eV,441.0*eV,449.0*eV,470.0*eV,470.0*eV,469.0*eV, 488.0*eV,488.0*eV,487.0*eV,485.0*eV,491.0*eV,482.0*eV,488.0*eV, 491.0*eV,501.0*eV,523.0*eV,535.0*eV,546.0*eV,560.0*eV,574.0*eV, 580.0*eV,591.0*eV,614.0*eV,628.0*eV,650.0*eV,658.0*eV,674.0*eV, 684.0*eV,694.0*eV,705.0*eV,718.0*eV,727.0*eV,736.0*eV,746.0*eV, 757.0*eV,790.0*eV,790.0*eV,800.0*eV,810.0*eV,823.0*eV,823.0*eV, 830.0*eV,825.0*eV,794.0*eV,827.0*eV,826.0*eV,841.0*eV,847.0*eV, 878.0*eV,890.0*eV,902.0*eV,921.0*eV,934.0*eV,939.0*eV,952.0*eV, 966.0*eV,980.0*eV}; if (verbosityLevel > 0) G4cout << "Going to build Oscillator Table for " << material->GetName() << G4endl; G4int nElements = material->GetNumberOfElements(); const G4ElementVector* elementVector = material->GetElementVector(); //At the moment, there's no way in Geant4 to know if a material //is defined with atom numbers or fraction of weigth const G4double* fractionVector = material->GetFractionVector(); //Take always the composition by fraction of mass. For the composition by //atoms: it is calculated by Geant4 but with some rounding to integers G4double totalZ = 0; G4double totalMolecularWeight = 0; G4double meanExcitationEnergy = 0; std::vector *StechiometricFactors = new std::vector; for (G4int i=0;iGetZ(); G4double fraction = fractionVector[i]; G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); StechiometricFactors->push_back(fraction/atomicWeigth); } //Find max G4double MaxStechiometricFactor = 0.; for (G4int i=0;i MaxStechiometricFactor) MaxStechiometricFactor = (*StechiometricFactors)[i]; } if (MaxStechiometricFactor<1e-16) { G4cout << "G4PenelopeOscillatorManager::BuildOscillatorTable" << G4endl; G4cout << "Problem with the mass composition of " << material->GetName() << G4endl; G4Exception(); } //Normalize for (G4int i=0;iGetTotNbOfAtomsPerVolume()/theatomsPerMolecule; //molecules per unit volume if (verbosityLevel > 1) { for (size_t i=0;isize();i++) { G4cout << "Element " << (*elementVector)[i]->GetSymbol() << " (Z = " << (*elementVector)[i]->GetZ() << ") --> " << (*StechiometricFactors)[i] << " atoms/molecule " << G4endl; } } for (G4int i=0;iGetZ(); totalZ += iZ * (*StechiometricFactors)[i]; totalMolecularWeight += (*elementVector)[i]->GetA() * (*StechiometricFactors)[i]; meanExcitationEnergy += iZ*std::log(meanAtomExcitationEnergy[iZ-1])*(*StechiometricFactors)[i]; /* G4cout << iZ << " " << (*StechiometricFactors)[i] << " " << totalZ << " " << totalMolecularWeight/(g/mole) << " " << meanExcitationEnergy << " " << meanAtomExcitationEnergy[iZ-1]/eV << G4endl; */ } meanExcitationEnergy = std::exp(meanExcitationEnergy/totalZ); atomicNumber->insert(std::make_pair(material,totalZ)); atomicMass->insert(std::make_pair(material,totalMolecularWeight)); excitationEnergy->insert(std::make_pair(material,meanExcitationEnergy)); atomsPerMolecule->insert(std::make_pair(material,theatomsPerMolecule)); if (verbosityLevel > 1) { G4cout << "Calculated mean excitation energy for " << material->GetName() << " = " << meanExcitationEnergy/eV << " eV" << G4endl; } std::vector *helper = new std::vector; //First Oscillator: conduction band. Tentativaly assumed to consist of valence electrons (each //atom contributes a number of electrons equal to its lowest chemical valence) G4PenelopeOscillator newOsc; newOsc.SetOscillatorStrength(0.); newOsc.SetIonisationEnergy(0*eV); newOsc.SetHartreeFactor(0); newOsc.SetParentZ(0); newOsc.SetShellFlag(30); newOsc.SetParentShellID(30); //does not correspond to any "real" level helper->push_back(newOsc); //Load elements and oscillators for (G4int k=0;kGetZ(); G4bool finished = false; for (G4int i=0;i<2000 && !finished;i++) { /* elementData[0][i] = Z; elementData[1][i] = shellCode; elementData[2][i] = occupationNumber; elementData[3][i] = ionisationEnergy; elementData[4][i] = hartreeProfile; */ if (elementData[0][i] == Z) { G4int shellID = (G4int) elementData[1][i]; G4double occup = elementData[2][i]; if (shellID > 0) { if (std::fabs(occup) > 0) { G4PenelopeOscillator newOsc; newOsc.SetOscillatorStrength(std::fabs(occup)*(*StechiometricFactors)[k]); newOsc.SetIonisationEnergy(elementData[3][i]); newOsc.SetHartreeFactor(elementData[4][i]/fine_structure_const); newOsc.SetParentZ(elementData[0][i]); //keep track of the origianl shell level newOsc.SetParentShellID((G4int)elementData[1][i]); //register only K, L and M shells. Outer shells all grouped with //shellIndex = 30 if (elementData[0][i] > 6 && elementData[1][i] < 10) newOsc.SetShellFlag(((G4int)elementData[1][i])); else newOsc.SetShellFlag(30); helper->push_back(newOsc); if (occup < 0) { G4double ff = (*helper)[0].GetOscillatorStrength(); ff += std::fabs(occup)*(*StechiometricFactors)[k]; (*helper)[0].SetOscillatorStrength(ff); } } } } if ( elementData[0][i] > Z) finished = true; } } delete StechiometricFactors; //NOW: sort oscillators according to increasing ionisation energy //Notice: it works because helper is a vector of _object_, not a //vector to _pointers_ std::sort(helper->begin(),helper->end()); // Plasma energy and conduction band excitation G4double RydbergEnergy = 13.60569*eV; G4double Omega = std::sqrt(4*pi*moleculeDensity*totalZ*Bohr_radius)*Bohr_radius*2.0*RydbergEnergy; G4double conductionStrength = (*helper)[0].GetOscillatorStrength(); G4double plasmaEnergy = Omega*std::sqrt(conductionStrength/totalZ); plasmaSquared->insert(std::make_pair(material,Omega*Omega)); G4bool isAConductor = false; G4int nullOsc = 0; if (verbosityLevel > 1) { G4cout << "Estimated oscillator strenght and energy of plasmon: " << conductionStrength << " and " << plasmaEnergy/eV << " eV" << G4endl; } if (conductionStrength < 0.5 || plasmaEnergy<1.0*eV) //this is an insulator { //remove conduction band oscillator helper->erase(helper->begin()); } else //this is a conductor, Outer shells moved to conduction band { isAConductor = true; //copy the conduction strenght.. The number is going to change. G4double conductionStrengthCopy = conductionStrength; G4bool quit = false; for (size_t i = 1; isize() && !quit ;i++) { G4double oscStre = (*helper)[i].GetOscillatorStrength(); //loop is repeated over here if (oscStre < conductionStrength) { conductionStrengthCopy = conductionStrengthCopy-oscStre; (*helper)[i].SetOscillatorStrength(0.); nullOsc++; } else //this is passed only once - no goto - { quit = true; (*helper)[i].SetOscillatorStrength(oscStre-conductionStrengthCopy); if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12) { conductionStrength += (*helper)[i].GetOscillatorStrength(); (*helper)[i].SetOscillatorStrength(0.); nullOsc++; } } } //Update conduction band (*helper)[0].SetOscillatorStrength(conductionStrength); (*helper)[0].SetIonisationEnergy(0.); (*helper)[0].SetResonanceEnergy(plasmaEnergy); G4double hartree = 0.75/std::sqrt(3.0*pi*pi*moleculeDensity* Bohr_radius*Bohr_radius*Bohr_radius*conductionStrength); (*helper)[0].SetHartreeFactor(hartree/fine_structure_const); } //Check f-sum rule G4double sum = 0; for (size_t i=0;isize();i++) { sum += (*helper)[i].GetOscillatorStrength(); } if (std::fabs(sum-totalZ) > (1e-6*totalZ)) { G4cout << "G4PenelopeOscillatorManager - Inconsistent oscillator data " << G4endl; G4cout << sum << " " << totalZ << G4endl; G4Exception(); } if (std::fabs(sum-totalZ) > (1e-12*totalZ)) { G4double fact = totalZ/sum; for (size_t i=0;isize();i++) { G4double ff = (*helper)[i].GetOscillatorStrength()*fact; (*helper)[i].SetOscillatorStrength(ff); } } //Remove null items for (G4int k=0;ksize() && !exit;i++) { if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12) { helper->erase(helper->begin()+i); exit = true; } } } //Sternheimer's adjustment factor G4double adjustmentFactor = 0; if (helper->size() > 1) { G4double TST = totalZ*std::log(meanExcitationEnergy/eV); G4double AALow = 0.5; G4double AAHigh = 10.; do { adjustmentFactor = (AALow+AAHigh)*0.5; G4double sum = 0; for (size_t i=0;isize();i++) { if (i == 0 && isAConductor) { G4double resEne = (*helper)[i].GetResonanceEnergy(); sum += (*helper)[i].GetOscillatorStrength()*std::log(resEne/eV); } else { G4double ionEne = (*helper)[i].GetIonisationEnergy(); G4double oscStre = (*helper)[i].GetOscillatorStrength(); G4double WI2 = (adjustmentFactor*adjustmentFactor*ionEne*ionEne) + 2./3.*(oscStre/totalZ)*Omega*Omega; G4double resEne = std::sqrt(WI2); (*helper)[i].SetResonanceEnergy(resEne); sum += (*helper)[i].GetOscillatorStrength()*std::log(resEne/eV); } } if (sum < TST) AALow = adjustmentFactor; else AAHigh = adjustmentFactor; }while((AAHigh-AALow)>(1e-14*adjustmentFactor)); } else { G4double ionEne = (*helper)[0].GetIonisationEnergy(); (*helper)[0].SetIonisationEnergy(std::fabs(ionEne)); (*helper)[0].SetResonanceEnergy(meanExcitationEnergy); } if (verbosityLevel > 1) { G4cout << "Sternheimer's adjustment factor: " << adjustmentFactor << G4endl; } //Check again for data consistency G4double xcheck = (*helper)[0].GetOscillatorStrength()*std::log((*helper)[0].GetResonanceEnergy()); G4double TST = (*helper)[0].GetOscillatorStrength(); for (size_t i=1;isize();i++) { xcheck += (*helper)[i].GetOscillatorStrength()*std::log((*helper)[i].GetResonanceEnergy()); TST += (*helper)[i].GetOscillatorStrength(); } if (std::fabs(TST-totalZ)>1e-8*totalZ) { G4cout << "G4PenelopeOscillatorManager - Inconsistent oscillator data " << G4endl; G4cout << TST << " " << totalZ << G4endl; G4Exception(); } xcheck = std::exp(xcheck/totalZ); if (std::fabs(xcheck-meanExcitationEnergy) > 1e-8*meanExcitationEnergy) { G4cout << "G4PenelopeOscillatorManager - Error in Sterheimer factor calculation " << G4endl; G4cout << xcheck/eV << " " << meanExcitationEnergy/eV << G4endl; G4Exception(); } //Selection of the lowest ionisation energy for inner shells. Only the K, L and M shells with //ionisation energy less than the N1 shell of the heaviest element in the material are considered as //inner shells. As a results, the inner/outer shell character of an atomic shell depends on the //composition of the material. G4double Zmax = 0; for (G4int k=0;kGetZ(); if (Z>Zmax) Zmax = Z; } //Find N1 level of the heaviest element (if any). G4bool found = false; G4double cutEnergy = 50*eV; for (size_t i=0;isize() && !found;i++) { G4double Z = (*helper)[i].GetParentZ(); G4int shID = (*helper)[i].GetParentShellID(); //look for the N1 level if (shID == 10 && Z == Zmax) { found = true; if ((*helper)[i].GetIonisationEnergy() > cutEnergy) cutEnergy = (*helper)[i].GetIonisationEnergy(); } } //Make that cutEnergy cannot be higher than 250 eV, namely the fluorescence level by //Geant4 G4double lowEnergyLimitForFluorescence = 250*eV; cutEnergy = std::min(cutEnergy,lowEnergyLimitForFluorescence); if (verbosityLevel > 1) G4cout << "Cutoff energy: " << cutEnergy/eV << " eV" << G4endl; // //Copy helper in the oscillatorTable for Ionisation // //Oscillator table Ionisation for the material G4PenelopeOscillatorTable* theTable = new G4PenelopeOscillatorTable(); //vector of oscillator G4PenelopeOscillatorResEnergyComparator comparator; std::sort(helper->begin(),helper->end(),comparator); //COPY THE HELPER (vector of object) to theTable (vector of Pointers). for (size_t i=0;isize();i++) { //copy content --> one may need it later (e.g. to fill an other table, with variations) G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]); theTable->push_back(theOsc); } //Oscillators of outer shells with resonance energies differing by a factor less than //Rgroup are grouped as a single oscillator G4double Rgroup = 1.05; size_t Nost = theTable->size(); size_t firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator G4bool loopAgain = false; G4int removedLevels = 0; do { loopAgain = false; if (Nost>firstIndex+1) { removedLevels = 0; for (size_t i=firstIndex;iGetShellFlag(); G4double ionEne = (*theTable)[i]->GetIonisationEnergy(); G4double resEne = (*theTable)[i]->GetResonanceEnergy(); G4double resEnePlus1 = (*theTable)[i+1]->GetResonanceEnergy(); G4double oscStre = (*theTable)[i]->GetOscillatorStrength(); G4double oscStrePlus1 = (*theTable)[i+1]->GetOscillatorStrength(); //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope if (ionEne>cutEnergy) //remove condition that shellFlag < 10! skipLoop = true; if (resEne<1.0*eV || resEnePlus1<1.0*eV) skipLoop = true; if (resEnePlus1 > Rgroup*resEne) skipLoop = true; if (!skipLoop) { G4double newRes = std::exp((oscStre*std::log(resEne)+ oscStrePlus1*std::log(resEnePlus1)) /(oscStre+oscStrePlus1)); (*theTable)[i]->SetResonanceEnergy(newRes); G4double newIon = (oscStre*ionEne+ oscStrePlus1*(*theTable)[i+1]->GetIonisationEnergy())/ (oscStre+oscStrePlus1); (*theTable)[i]->SetIonisationEnergy(newIon); G4double newStre = oscStre+oscStrePlus1; (*theTable)[i]->SetOscillatorStrength(newStre); G4double newHartree = (oscStre*(*theTable)[i]->GetHartreeFactor()+ oscStrePlus1*(*theTable)[i+1]->GetHartreeFactor())/ (oscStre+oscStrePlus1); (*theTable)[i]->SetHartreeFactor(newHartree); if ((*theTable)[i]->GetParentZ() != (*theTable)[i+1]->GetParentZ()) (*theTable)[i]->SetParentZ(0.); if (shellFlag < 10 || (*theTable)[i+1]->GetShellFlag() < 10) { G4int newFlag = std::min(shellFlag,(*theTable)[i+1]->GetShellFlag()); (*theTable)[i]->SetShellFlag(newFlag); } else (*theTable)[i]->SetShellFlag(30); //We've lost anyway the track of the original level (*theTable)[i]->SetParentShellID((*theTable)[i]->GetShellFlag()); if (isize() << G4endl; //theTable->erase(theTable->end()); theTable->erase(theTable->begin()+theTable->size()-1); //delete last element removedLevels++; } } } if (removedLevels) { Nost -= removedLevels; loopAgain = true; } if (Rgroup < 1.414213 || Nost > 64) { Rgroup = Rgroup*Rgroup; loopAgain = true; } }while(loopAgain); if (verbosityLevel > 1) { G4cout << "Final grouping factor for Ionisation: " << Rgroup << G4endl; } //Final Electron/Positron model parameters for (size_t i=0;isize();i++) { //Set cutoff recoil energy for the resonant mode G4double ionEne = (*theTable)[i]->GetIonisationEnergy(); if (ionEne < 1e-3*eV) { G4double resEne = (*theTable)[i]->GetResonanceEnergy(); (*theTable)[i]->SetIonisationEnergy(0.*eV); (*theTable)[i]->SetCutoffRecoilResonantEnergy(resEne); } else (*theTable)[i]->SetCutoffRecoilResonantEnergy(ionEne); } //Last step oscillatorStoreIonisation->insert(std::make_pair(material,theTable)); /* SAME FOR COMPTON */ // //Copy helper in the oscillatorTable for Compton // //Oscillator table Ionisation for the material G4PenelopeOscillatorTable* theTableC = new G4PenelopeOscillatorTable(); //vector of oscillator //order by ionisation energy std::sort(helper->begin(),helper->end()); //COPY THE HELPER (vector of object) to theTable (vector of Pointers). for (size_t i=0;isize();i++) { //copy content --> one may need it later (e.g. to fill an other table, with variations) G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]); theTableC->push_back(theOsc); } //Oscillators of outer shells with resonance energies differing by a factor less than //Rgroup are grouped as a single oscillator Rgroup = 1.5; Nost = theTableC->size(); firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator loopAgain = false; removedLevels = 0; do { loopAgain = false; if (Nost>firstIndex+1) { removedLevels = 0; for (size_t i=firstIndex;iGetShellFlag(); G4double ionEne = (*theTableC)[i]->GetIonisationEnergy(); G4double ionEnePlus1 = (*theTableC)[i+1]->GetIonisationEnergy(); G4double oscStre = (*theTableC)[i]->GetOscillatorStrength(); G4double oscStrePlus1 = (*theTableC)[i+1]->GetOscillatorStrength(); //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope if (ionEne>cutEnergy) skipLoop = true; if (ionEne<1.0*eV || ionEnePlus1<1.0*eV) skipLoop = true; if (ionEnePlus1 > Rgroup*ionEne) skipLoop = true; if (!skipLoop) { G4double newIon = (oscStre*ionEne+ oscStrePlus1*ionEnePlus1)/ (oscStre+oscStrePlus1); (*theTableC)[i]->SetIonisationEnergy(newIon); G4double newStre = oscStre+oscStrePlus1; (*theTableC)[i]->SetOscillatorStrength(newStre); G4double newHartree = (oscStre*(*theTableC)[i]->GetHartreeFactor()+ oscStrePlus1*(*theTableC)[i+1]->GetHartreeFactor())/ (oscStre+oscStrePlus1); (*theTableC)[i]->SetHartreeFactor(newHartree); if ((*theTableC)[i]->GetParentZ() != (*theTableC)[i+1]->GetParentZ()) (*theTableC)[i]->SetParentZ(0.); (*theTableC)[i]->SetShellFlag(30); (*theTableC)[i]->SetParentShellID((*theTableC)[i]->GetShellFlag()); if (ierase(theTableC->begin()+theTableC->size()-1); //delete last element //theTableC->erase(theTableC->end()); //delete last element removedLevels++; } } } if (removedLevels) { Nost -= removedLevels; loopAgain = true; } if (Rgroup < 2.0 || Nost > 64) { Rgroup = Rgroup*Rgroup; loopAgain = true; } }while(loopAgain); if (verbosityLevel > 1) { G4cout << "Final grouping factor for Compton: " << Rgroup << G4endl; } //Last step oscillatorStoreCompton->insert(std::make_pair(material,theTableC)); /* //TESTING PURPOSES if (verbosityLevel > 1) { G4cout << "The table contains " << helper->size() << " oscillators " << G4endl; for (size_t k=0;ksize();k++) { G4cout << "Oscillator # " << k << G4endl; G4cout << "Z = " << (*helper)[k].GetParentZ() << G4endl; G4cout << "Shell Flag = " << (*helper)[k].GetShellFlag() << G4endl; G4cout << "Compton index = " << (*helper)[k].GetHartreeFactor() << G4endl; G4cout << "Ionisation energy = " << (*helper)[k].GetIonisationEnergy()/eV << " eV" << G4endl; G4cout << "Occupation number = " << (*helper)[k].GetOscillatorStrength() << G4endl; G4cout << "Resonance energy = " << (*helper)[k].GetResonanceEnergy()/eV << " eV" << G4endl; } for (size_t k=0;ksize();k++) { G4cout << k << " " << (*helper)[k].GetOscillatorStrength() << " " << (*helper)[k].GetIonisationEnergy()/eV << " " << (*helper)[k].GetResonanceEnergy()/eV << " " << (*helper)[k].GetParentZ() << " " << (*helper)[k].GetShellFlag() << " " << (*helper)[k].GetHartreeFactor() << G4endl; } } */ //CLEAN UP theHelper and its content delete helper; if (verbosityLevel > 1) Dump(material); return; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopeOscillatorManager::ReadElementData() { if (verbosityLevel > 0) { G4cout << "G4PenelopeOscillatorManager::ReadElementData()" << G4endl; G4cout << "Going to read Element Data" << G4endl; } char* path = getenv("G4LEDATA"); if (!path) { G4String excep = "G4PenelopeOscillatorManager - G4LEDATA environment variable not set!"; G4Exception(excep); return; } G4String pathString(path); G4String pathFile = pathString + "/penelope/pdatconf.p08"; std::ifstream file(pathFile); if (!file.is_open()) { G4String excep = "G4PenelopeOscillatorManager - data file " + pathFile + " not found!"; G4Exception(excep); } //Read header (22 lines) G4String theHeader; for (G4int iline=0;iline<22;iline++) getline(file,theHeader); //Done G4int Z=0; G4int shellCode = 0; G4String shellId = "NULL"; G4int occupationNumber = 0; G4double ionisationEnergy = 0.0*eV; G4double hartreeProfile = 0.; //Start reading data for (G4int i=0;!file.eof();i++) { file >> Z >> shellCode >> shellId >> occupationNumber >> ionisationEnergy >> hartreeProfile; if (Z>0 && i<2000) { elementData[0][i] = Z; elementData[1][i] = shellCode; elementData[2][i] = occupationNumber; elementData[3][i] = ionisationEnergy*eV; elementData[4][i] = hartreeProfile; } } file.close(); if (verbosityLevel > 1) { G4cout << "G4PenelopeOscillatorManager::ReadElementData(): Data file read" << G4endl; } fReadElementData = true; return; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeOscillatorManager::GetMeanExcitationEnergy(const G4Material* mat) { // (1) First time, create oscillatorStores and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (excitationEnergy->count(mat)) return excitationEnergy->find(mat)->second; // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (excitationEnergy->count(mat)) return excitationEnergy->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetMolecularExcitationEnergy() " << G4endl; G4cout << "Impossible to retrieve the excitation energy for " << mat->GetName() << G4endl; return 0; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeOscillatorManager::GetPlasmaEnergySquared(const G4Material* mat) { // (1) First time, create oscillatorStores and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (plasmaSquared->count(mat)) return plasmaSquared->find(mat)->second; // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (plasmaSquared->count(mat)) return plasmaSquared->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetPlasmaEnergySquared() " << G4endl; G4cout << "Impossible to retrieve the plasma energy for " << mat->GetName() << G4endl; return 0; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopeOscillatorManager::GetAtomsPerMolecule(const G4Material* mat) { // (1) First time, create oscillatorStores and read data CheckForTablesCreated(); // (2) Check if the material has been already included if (atomsPerMolecule->count(mat)) return atomsPerMolecule->find(mat)->second; // (3) If we are here, it means that we have to create the table for the material BuildOscillatorTable(mat); // (4) now, the oscillator store should be ok if (atomsPerMolecule->count(mat)) return atomsPerMolecule->find(mat)->second; else { G4cout << "G4PenelopeOscillatorManager::GetAtomsPerMolecule() " << G4endl; G4cout << "Impossible to retrieve the number of atoms per molecule for " << mat->GetName() << G4endl; return 0; } }