| [968] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| [991] | 26 | // $Id: G4PenelopePhotoElectricModel.cc,v 1.2 2008/12/04 14:09:36 pandola Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-02 $
|
|---|
| [968] | 28 | //
|
|---|
| 29 | // Author: Luciano Pandola
|
|---|
| 30 | //
|
|---|
| 31 | // History:
|
|---|
| 32 | // --------
|
|---|
| [991] | 33 | // 08 Oct 2008 L Pandola Migration from process to model
|
|---|
| [968] | 34 | //
|
|---|
| 35 |
|
|---|
| 36 | #include "G4PenelopePhotoElectricModel.hh"
|
|---|
| 37 | #include "G4ParticleDefinition.hh"
|
|---|
| 38 | #include "G4MaterialCutsCouple.hh"
|
|---|
| 39 | #include "G4ProductionCutsTable.hh"
|
|---|
| 40 | #include "G4DynamicParticle.hh"
|
|---|
| 41 | #include "G4PhysicsTable.hh"
|
|---|
| 42 | #include "G4ElementTable.hh"
|
|---|
| 43 | #include "G4Element.hh"
|
|---|
| 44 | #include "G4CrossSectionHandler.hh"
|
|---|
| 45 | #include "G4AtomicTransitionManager.hh"
|
|---|
| 46 | #include "G4AtomicShell.hh"
|
|---|
| 47 | #include "G4Gamma.hh"
|
|---|
| 48 | #include "G4Electron.hh"
|
|---|
| 49 |
|
|---|
| 50 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 51 |
|
|---|
| 52 |
|
|---|
| 53 | G4PenelopePhotoElectricModel::G4PenelopePhotoElectricModel(const G4ParticleDefinition*,
|
|---|
| 54 | const G4String& nam)
|
|---|
| 55 | :G4VEmModel(nam),isInitialised(false),crossSectionHandler(0),
|
|---|
| 56 | shellCrossSectionHandler(0)
|
|---|
| 57 | {
|
|---|
| 58 | fIntrinsicLowEnergyLimit = 100.0*eV;
|
|---|
| 59 | fIntrinsicHighEnergyLimit = 100.0*GeV;
|
|---|
| 60 | SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
|
|---|
| 61 | SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
|
|---|
| 62 | //
|
|---|
| 63 | fUseAtomicDeexcitation = true;
|
|---|
| 64 | verboseLevel= 0;
|
|---|
| 65 | // Verbosity scale:
|
|---|
| 66 | // 0 = nothing
|
|---|
| 67 | // 1 = warning for energy non-conservation
|
|---|
| 68 | // 2 = details of energy budget
|
|---|
| 69 | // 3 = calculation of cross sections, file openings, sampling of atoms
|
|---|
| 70 | // 4 = entering in methods
|
|---|
| 71 | }
|
|---|
| 72 |
|
|---|
| 73 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 74 |
|
|---|
| 75 | G4PenelopePhotoElectricModel::~G4PenelopePhotoElectricModel()
|
|---|
| 76 | {
|
|---|
| 77 | if (crossSectionHandler) delete crossSectionHandler;
|
|---|
| 78 | if (shellCrossSectionHandler) delete shellCrossSectionHandler;
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 82 |
|
|---|
| 83 | void G4PenelopePhotoElectricModel::Initialise(const G4ParticleDefinition*,
|
|---|
| 84 | const G4DataVector& )
|
|---|
| 85 | {
|
|---|
| 86 | if (verboseLevel > 3)
|
|---|
| 87 | G4cout << "Calling G4PenelopePhotoElectricModel::Initialise()" << G4endl;
|
|---|
| 88 | if (crossSectionHandler)
|
|---|
| 89 | {
|
|---|
| 90 | crossSectionHandler->Clear();
|
|---|
| 91 | delete crossSectionHandler;
|
|---|
| 92 | }
|
|---|
| 93 | if (shellCrossSectionHandler)
|
|---|
| 94 | {
|
|---|
| 95 | shellCrossSectionHandler->Clear();
|
|---|
| 96 | delete shellCrossSectionHandler;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | //Check energy limits
|
|---|
| 100 | if (LowEnergyLimit() < fIntrinsicLowEnergyLimit)
|
|---|
| 101 | {
|
|---|
| 102 | G4cout << "G4PenelopePhotoElectricModel: low energy limit increased from " <<
|
|---|
| 103 | LowEnergyLimit()/eV << " eV to " << fIntrinsicLowEnergyLimit/eV << " eV" <<
|
|---|
| 104 | G4endl;
|
|---|
| 105 | SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
|
|---|
| 106 | }
|
|---|
| 107 | if (HighEnergyLimit() > fIntrinsicHighEnergyLimit)
|
|---|
| 108 | {
|
|---|
| 109 | G4cout << "G4PenelopePhotoElectricModel: high energy limit decreased from " <<
|
|---|
| 110 | HighEnergyLimit()/GeV << " GeV to " << fIntrinsicHighEnergyLimit/GeV << " GeV"
|
|---|
| 111 | << G4endl;
|
|---|
| 112 | SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
|
|---|
| 113 | }
|
|---|
| 114 |
|
|---|
| 115 |
|
|---|
| 116 | //Re-initialize cross section handlers
|
|---|
| 117 | crossSectionHandler = new G4CrossSectionHandler();
|
|---|
| 118 | crossSectionHandler->Clear();
|
|---|
| 119 | G4String crossSectionFile = "penelope/ph-cs-pen-";
|
|---|
| 120 | crossSectionHandler->LoadData(crossSectionFile);
|
|---|
| 121 | shellCrossSectionHandler = new G4CrossSectionHandler();
|
|---|
| 122 | shellCrossSectionHandler->Clear();
|
|---|
| 123 | crossSectionFile = "penelope/ph-ss-cs-pen-";
|
|---|
| 124 | shellCrossSectionHandler->LoadShellData(crossSectionFile);
|
|---|
| 125 | //This is used to retrieve cross section values later on
|
|---|
| 126 | crossSectionHandler->BuildMeanFreePathForMaterials();
|
|---|
| 127 |
|
|---|
| 128 | if (verboseLevel > 2)
|
|---|
| 129 | G4cout << "Loaded cross section files for PenelopePhotoElectric" << G4endl;
|
|---|
| 130 |
|
|---|
| 131 | G4cout << "Penelope Photo-Electric model is initialized " << G4endl
|
|---|
| 132 | << "Energy range: "
|
|---|
| 133 | << LowEnergyLimit() / MeV << " MeV - "
|
|---|
| 134 | << HighEnergyLimit() / GeV << " GeV"
|
|---|
| 135 | << G4endl;
|
|---|
| 136 |
|
|---|
| 137 | if(isInitialised) return;
|
|---|
| 138 |
|
|---|
| 139 | if(pParticleChange)
|
|---|
| 140 | fParticleChange = reinterpret_cast<G4ParticleChangeForGamma*>(pParticleChange);
|
|---|
| 141 | else
|
|---|
| 142 | fParticleChange = new G4ParticleChangeForGamma();
|
|---|
| 143 | isInitialised = true;
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 147 |
|
|---|
| 148 | G4double G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom(
|
|---|
| 149 | const G4ParticleDefinition*,
|
|---|
| 150 | G4double energy,
|
|---|
| 151 | G4double Z, G4double,
|
|---|
| 152 | G4double, G4double)
|
|---|
| 153 | {
|
|---|
| 154 | //
|
|---|
| 155 | // Penelope model. Use data-driven approach for cross section estimate (and
|
|---|
| 156 | // also shell sampling from a given atom). Data are from the Livermore database
|
|---|
| 157 | // D.E. Cullen et al., Report UCRL-50400 (1989)
|
|---|
| 158 | //
|
|---|
| 159 |
|
|---|
| 160 | if (verboseLevel > 3)
|
|---|
| 161 | G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopePhotoElectricModel" << G4endl;
|
|---|
| 162 |
|
|---|
| 163 | G4int iZ = (G4int) Z;
|
|---|
| 164 | if (!crossSectionHandler)
|
|---|
| 165 | {
|
|---|
| 166 | G4cout << "G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom" << G4endl;
|
|---|
| 167 | G4cout << "The cross section handler is not correctly initialized" << G4endl;
|
|---|
| 168 | G4Exception();
|
|---|
| 169 | }
|
|---|
| 170 | G4double cs = crossSectionHandler->FindValue(iZ,energy);
|
|---|
| 171 |
|
|---|
| 172 | if (verboseLevel > 2)
|
|---|
| 173 | G4cout << "Photoelectric cross section at " << energy/MeV << " MeV for Z=" << Z <<
|
|---|
| 174 | " = " << cs/barn << " barn" << G4endl;
|
|---|
| 175 | return cs;
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 179 |
|
|---|
| 180 | void G4PenelopePhotoElectricModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
|
|---|
| 181 | const G4MaterialCutsCouple* couple,
|
|---|
| 182 | const G4DynamicParticle* aDynamicGamma,
|
|---|
| 183 | G4double,
|
|---|
| 184 | G4double)
|
|---|
| 185 | {
|
|---|
| 186 | //
|
|---|
| 187 | // Photoelectric effect, Penelope model
|
|---|
| 188 | //
|
|---|
| 189 | // The target atom and the target shell are sampled according to the Livermore
|
|---|
| 190 | // database
|
|---|
| 191 | // D.E. Cullen et al., Report UCRL-50400 (1989)
|
|---|
| 192 | // The angular distribution of the electron in the final state is sampled
|
|---|
| 193 | // according to the Sauter distribution from
|
|---|
| 194 | // F. Sauter, Ann. Phys. 11 (1931) 454
|
|---|
| 195 | // The energy of the final electron is given by the initial photon energy minus
|
|---|
| 196 | // the binding energy. Fluorescence de-excitation is subsequently produced
|
|---|
| 197 | // (to fill the vacancy) according to the general Geant4 G4DeexcitationManager:
|
|---|
| 198 | // J. Stepanek, Comp. Phys. Comm. 1206 pp 1-1-9 (1997)
|
|---|
| 199 |
|
|---|
| 200 | if (verboseLevel > 3)
|
|---|
| 201 | G4cout << "Calling SamplingSecondaries() of G4PenelopePhotoElectricModel" << G4endl;
|
|---|
| 202 |
|
|---|
| 203 | G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
|
|---|
| 204 |
|
|---|
| 205 | if (photonEnergy <= LowEnergyLimit())
|
|---|
| 206 | {
|
|---|
| 207 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 208 | fParticleChange->SetProposedKineticEnergy(0.);
|
|---|
| 209 | fParticleChange->ProposeLocalEnergyDeposit(photonEnergy);
|
|---|
| 210 | return ;
|
|---|
| 211 | }
|
|---|
| 212 |
|
|---|
| 213 | G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
|
|---|
| 214 |
|
|---|
| 215 | // Select randomly one element in the current material
|
|---|
| 216 | if (verboseLevel > 2)
|
|---|
| 217 | G4cout << "Going to select element in " << couple->GetMaterial()->GetName() << G4endl;
|
|---|
| 218 | //use crossSectionHandler instead of G4EmElementSelector because in this case
|
|---|
| 219 | //the dimension of the table is equal to the dimension of the database (less interpolation errors)
|
|---|
| 220 | G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy);
|
|---|
| 221 | if (verboseLevel > 2)
|
|---|
| 222 | G4cout << "Selected Z = " << Z << G4endl;
|
|---|
| 223 |
|
|---|
| 224 | // Select the ionised shell in the current atom according to shell cross sections
|
|---|
| 225 | size_t shellIndex = shellCrossSectionHandler->SelectRandomShell(Z,photonEnergy);
|
|---|
| 226 |
|
|---|
| 227 | // Retrieve the corresponding identifier and binding energy of the selected shell
|
|---|
| 228 | const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 229 | const G4AtomicShell* shell = transitionManager->Shell(Z,shellIndex);
|
|---|
| 230 | G4double bindingEnergy = shell->BindingEnergy();
|
|---|
| 231 | G4int shellId = shell->ShellId();
|
|---|
| 232 |
|
|---|
| 233 | G4double localEnergyDeposit = 0.0;
|
|---|
| 234 |
|
|---|
| 235 | // Primary outcoming electron
|
|---|
| 236 | G4double eKineticEnergy = photonEnergy - bindingEnergy;
|
|---|
| 237 |
|
|---|
| 238 | G4double cutForLowEnergySecondaryParticles = 250.0*eV;
|
|---|
| 239 | const G4ProductionCutsTable* theCoupleTable=
|
|---|
| 240 | G4ProductionCutsTable::GetProductionCutsTable();
|
|---|
| 241 | size_t indx = couple->GetIndex();
|
|---|
| 242 | G4double cutE = (*(theCoupleTable->GetEnergyCutsVector(1)))[indx];
|
|---|
| 243 | cutE = std::max(cutForLowEnergySecondaryParticles,cutE);
|
|---|
| 244 |
|
|---|
| 245 | // There may be cases where the binding energy of the selected shell is > photon energy
|
|---|
| 246 | // In such cases do not generate secondaries
|
|---|
| 247 | if (eKineticEnergy > 0.)
|
|---|
| 248 | {
|
|---|
| 249 | //Now check if the electron is above cuts: if so, it is created explicitely
|
|---|
| 250 | if (eKineticEnergy > cutE)
|
|---|
| 251 | {
|
|---|
| 252 | // The electron is created
|
|---|
| 253 | // Direction sampled from the Sauter distribution
|
|---|
| 254 | G4double cosTheta = SampleElectronDirection(eKineticEnergy);
|
|---|
| 255 | G4double sinTheta = std::sqrt(1-cosTheta*cosTheta);
|
|---|
| 256 | G4double phi = twopi * G4UniformRand() ;
|
|---|
| 257 | G4double dirx = sinTheta * std::cos(phi);
|
|---|
| 258 | G4double diry = sinTheta * std::sin(phi);
|
|---|
| 259 | G4double dirz = cosTheta ;
|
|---|
| 260 | G4ThreeVector electronDirection(dirx,diry,dirz); //electron direction
|
|---|
| 261 | electronDirection.rotateUz(photonDirection);
|
|---|
| 262 | G4DynamicParticle* electron = new G4DynamicParticle (G4Electron::Electron(),
|
|---|
| 263 | electronDirection,
|
|---|
| 264 | eKineticEnergy);
|
|---|
| 265 | fvect->push_back(electron);
|
|---|
| 266 | }
|
|---|
| 267 | else
|
|---|
| 268 | localEnergyDeposit += eKineticEnergy;
|
|---|
| 269 | }
|
|---|
| 270 | else
|
|---|
| 271 | bindingEnergy = photonEnergy;
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | G4double energyInFluorescence = 0; //testing purposes
|
|---|
| 275 |
|
|---|
| 276 | //Now, take care of fluorescence, if required
|
|---|
| 277 | if (fUseAtomicDeexcitation)
|
|---|
| 278 | {
|
|---|
| 279 | G4double cutG = (*(theCoupleTable->GetEnergyCutsVector(0)))[indx];
|
|---|
| 280 | cutG = std::min(cutForLowEnergySecondaryParticles,cutG);
|
|---|
| 281 |
|
|---|
| 282 | std::vector<G4DynamicParticle*>* photonVector = 0;
|
|---|
| 283 |
|
|---|
| 284 | // Protection to avoid generating photons in the unphysical case of
|
|---|
| 285 | // shell binding energy > photon energy
|
|---|
| 286 | if (Z > 5 && (bindingEnergy > cutG || bindingEnergy > cutE))
|
|---|
| 287 | {
|
|---|
| 288 | photonVector = deexcitationManager.GenerateParticles(Z,shellId);
|
|---|
| 289 | //Check for single photons (if they are above threshold)
|
|---|
| 290 | for (size_t k=0; k< photonVector->size(); k++)
|
|---|
| 291 | {
|
|---|
| 292 | G4DynamicParticle* aPhoton = (*photonVector)[k];
|
|---|
| 293 | if (aPhoton)
|
|---|
| 294 | {
|
|---|
| 295 | G4double itsCut = cutG;
|
|---|
| 296 | if(aPhoton->GetDefinition() == G4Electron::Electron()) itsCut = cutE;
|
|---|
| 297 | G4double itsEnergy = aPhoton->GetKineticEnergy();
|
|---|
| 298 |
|
|---|
| 299 | if (itsEnergy > itsCut && itsEnergy <= bindingEnergy)
|
|---|
| 300 | {
|
|---|
| 301 | // Local energy deposit is given as the sum of the
|
|---|
| 302 | // energies of incident photons minus the energies
|
|---|
| 303 | // of the outcoming fluorescence photons
|
|---|
| 304 | bindingEnergy -= itsEnergy;
|
|---|
| 305 |
|
|---|
| 306 | }
|
|---|
| 307 | else
|
|---|
| 308 | {
|
|---|
| 309 | (*photonVector)[k] = 0;
|
|---|
| 310 | }
|
|---|
| 311 | }
|
|---|
| 312 | }
|
|---|
| 313 | }
|
|---|
| 314 | //Register valid secondaries
|
|---|
| 315 | if (photonVector)
|
|---|
| 316 | {
|
|---|
| 317 | for ( size_t ll = 0; ll <photonVector->size(); ll++)
|
|---|
| 318 | {
|
|---|
| 319 | G4DynamicParticle* aPhoton = (*photonVector)[ll];
|
|---|
| 320 | if (aPhoton)
|
|---|
| 321 | {
|
|---|
| 322 | energyInFluorescence += aPhoton->GetKineticEnergy();
|
|---|
| 323 | fvect->push_back(aPhoton);
|
|---|
| 324 | }
|
|---|
| 325 | }
|
|---|
| 326 | delete photonVector;
|
|---|
| 327 | }
|
|---|
| 328 | }
|
|---|
| 329 | //Residual energy is deposited locally
|
|---|
| 330 | localEnergyDeposit += bindingEnergy;
|
|---|
| 331 |
|
|---|
| 332 |
|
|---|
| 333 | if (localEnergyDeposit < 0)
|
|---|
| 334 | {
|
|---|
| 335 | G4cout << "WARNING - "
|
|---|
| 336 | << "G4PenelopePhotoElectric::PostStepDoIt - Negative energy deposit"
|
|---|
| 337 | << G4endl;
|
|---|
| 338 | localEnergyDeposit = 0;
|
|---|
| 339 | }
|
|---|
| 340 |
|
|---|
| 341 | //Update the status of the primary gamma (kill it)
|
|---|
| 342 | fParticleChange->SetProposedKineticEnergy(0.);
|
|---|
| 343 | fParticleChange->ProposeLocalEnergyDeposit(localEnergyDeposit);
|
|---|
| 344 | fParticleChange->ProposeTrackStatus(fStopAndKill);
|
|---|
| 345 |
|
|---|
| 346 | if (verboseLevel > 1)
|
|---|
| 347 | {
|
|---|
| 348 | G4cout << "-----------------------------------------------------------" << G4endl;
|
|---|
| 349 | G4cout << "Energy balance from G4PenelopePhotoElectric" << G4endl;
|
|---|
| 350 | G4cout << "Incoming photon energy: " << photonEnergy/keV << " keV" << G4endl;
|
|---|
| 351 | G4cout << "-----------------------------------------------------------" << G4endl;
|
|---|
| 352 | if (eKineticEnergy)
|
|---|
| 353 | G4cout << "Outgoing electron " << eKineticEnergy/keV << " keV" << G4endl;
|
|---|
| 354 | G4cout << "Fluorescence: " << energyInFluorescence/keV << " keV" << G4endl;
|
|---|
| 355 | G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl;
|
|---|
| 356 | G4cout << "Total final state: " << (eKineticEnergy+energyInFluorescence+localEnergyDeposit)/keV <<
|
|---|
| 357 | " keV" << G4endl;
|
|---|
| 358 | G4cout << "-----------------------------------------------------------" << G4endl;
|
|---|
| 359 | }
|
|---|
| 360 | if (verboseLevel > 0)
|
|---|
| 361 | {
|
|---|
| 362 | G4double energyDiff = std::fabs(eKineticEnergy+energyInFluorescence+localEnergyDeposit-photonEnergy);
|
|---|
| 363 | if (energyDiff > 0.05*keV)
|
|---|
| 364 | G4cout << "Warning from G4PenelopePhotoElectric: problem with energy conservation: " <<
|
|---|
| 365 | (eKineticEnergy+energyInFluorescence+localEnergyDeposit)/keV << " keV (final) vs. " <<
|
|---|
| 366 | photonEnergy/keV << " keV (initial)" << G4endl;
|
|---|
| 367 | }
|
|---|
| 368 | }
|
|---|
| 369 |
|
|---|
| 370 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 371 |
|
|---|
| 372 | void G4PenelopePhotoElectricModel::ActivateAuger(G4bool augerbool)
|
|---|
| 373 | {
|
|---|
| 374 | if (!fUseAtomicDeexcitation)
|
|---|
| 375 | {
|
|---|
| 376 | G4cout << "WARNING - G4PenelopePhotoElectricModel" << G4endl;
|
|---|
| 377 | G4cout << "The use of the Atomic Deexcitation Manager is set to false " << G4endl;
|
|---|
| 378 | G4cout << "Therefore, Auger electrons will be not generated anyway" << G4endl;
|
|---|
| 379 | }
|
|---|
| 380 | deexcitationManager.ActivateAugerElectronProduction(augerbool);
|
|---|
| 381 | if (verboseLevel > 1)
|
|---|
| 382 | G4cout << "Auger production set to " << augerbool << G4endl;
|
|---|
| 383 | }
|
|---|
| 384 |
|
|---|
| 385 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 386 |
|
|---|
| 387 | G4double G4PenelopePhotoElectricModel::SampleElectronDirection(G4double energy)
|
|---|
| 388 | {
|
|---|
| 389 | G4double costheta = 1.0;
|
|---|
| 390 | if (energy>1*GeV) return costheta;
|
|---|
| 391 |
|
|---|
| 392 | //1) initialize energy-dependent variables
|
|---|
| 393 | // Variable naming according to Eq. (2.24) of Penelope Manual
|
|---|
| 394 | // (pag. 44)
|
|---|
| 395 | G4double gamma = 1.0 + energy/electron_mass_c2;
|
|---|
| 396 | G4double gamma2 = gamma*gamma;
|
|---|
| 397 | G4double beta = std::sqrt((gamma2-1.0)/gamma2);
|
|---|
| 398 |
|
|---|
| 399 | // ac corresponds to "A" of Eq. (2.31)
|
|---|
| 400 | //
|
|---|
| 401 | G4double ac = (1.0/beta) - 1.0;
|
|---|
| 402 | G4double a1 = 0.5*beta*gamma*(gamma-1.0)*(gamma-2.0);
|
|---|
| 403 | G4double a2 = ac + 2.0;
|
|---|
| 404 | G4double gtmax = 2.0*(a1 + 1.0/ac);
|
|---|
| 405 |
|
|---|
| 406 | G4double tsam = 0;
|
|---|
| 407 | G4double gtr = 0;
|
|---|
| 408 |
|
|---|
| 409 | //2) sampling. Eq. (2.31) of Penelope Manual
|
|---|
| 410 | // tsam = 1-std::cos(theta)
|
|---|
| 411 | // gtr = rejection function according to Eq. (2.28)
|
|---|
| 412 | do{
|
|---|
| 413 | G4double rand = G4UniformRand();
|
|---|
| 414 | tsam = 2.0*ac * (2.0*rand + a2*std::sqrt(rand)) / (a2*a2 - 4.0*rand);
|
|---|
| 415 | gtr = (2.0 - tsam) * (a1 + 1.0/(ac+tsam));
|
|---|
| 416 | }while(G4UniformRand()*gtmax > gtr);
|
|---|
| 417 | costheta = 1.0-tsam;
|
|---|
| 418 | return costheta;
|
|---|
| 419 | }
|
|---|
| 420 |
|
|---|