// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4PenelopePhotoElectricModel.cc,v 1.10 2009/10/23 09:29:24 pandola Exp $ // GEANT4 tag $Name: emlowen-V09-02-64 $ // // Author: Luciano Pandola // // History: // -------- // 08 Oct 2008 L Pandola Migration from process to model // 08 Jan 2009 L Pandola Check shell index to avoid mismatch between // the Penelope cross section database and the // G4AtomicTransitionManager database. It suppresses // a warning from G4AtomicTransitionManager only. // Results are unchanged. // 25 Mar 2009 L Pandola Small fix to avoid wrong energy-violation warnings // 17 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries: // - apply internal high-energy limit only in constructor // - do not apply low-energy limit (default is 0) // - do not apply production threshold on secondaries // 19 May 2009 L Pandola Explicitely set to zero pointers deleted in // Initialise(), since they might be checked later on // 21 Oct 2009 L Pandola Remove un-necessary fUseAtomicDeexcitation flag - now managed by // G4VEmModel::DeexcitationFlag() // #include "G4PenelopePhotoElectricModel.hh" #include "G4ParticleDefinition.hh" #include "G4MaterialCutsCouple.hh" #include "G4ProductionCutsTable.hh" #include "G4DynamicParticle.hh" #include "G4PhysicsTable.hh" #include "G4ElementTable.hh" #include "G4Element.hh" #include "G4CrossSectionHandler.hh" #include "G4AtomicTransitionManager.hh" #include "G4AtomicShell.hh" #include "G4Gamma.hh" #include "G4Electron.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopePhotoElectricModel::G4PenelopePhotoElectricModel(const G4ParticleDefinition*, const G4String& nam) :G4VEmModel(nam),isInitialised(false),crossSectionHandler(0), shellCrossSectionHandler(0) { fIntrinsicLowEnergyLimit = 100.0*eV; fIntrinsicHighEnergyLimit = 100.0*GeV; // SetLowEnergyLimit(fIntrinsicLowEnergyLimit); SetHighEnergyLimit(fIntrinsicHighEnergyLimit); // //by default the model will inkove the atomic deexcitation SetDeexcitationFlag(true); verboseLevel= 0; // Verbosity scale: // 0 = nothing // 1 = warning for energy non-conservation // 2 = details of energy budget // 3 = calculation of cross sections, file openings, sampling of atoms // 4 = entering in methods } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4PenelopePhotoElectricModel::~G4PenelopePhotoElectricModel() { if (crossSectionHandler) delete crossSectionHandler; if (shellCrossSectionHandler) delete shellCrossSectionHandler; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopePhotoElectricModel::Initialise(const G4ParticleDefinition*, const G4DataVector& ) { if (verboseLevel > 3) G4cout << "Calling G4PenelopePhotoElectricModel::Initialise()" << G4endl; if (crossSectionHandler) { crossSectionHandler->Clear(); delete crossSectionHandler; crossSectionHandler = 0; } if (shellCrossSectionHandler) { shellCrossSectionHandler->Clear(); delete shellCrossSectionHandler; shellCrossSectionHandler =0; } //Re-initialize cross section handlers crossSectionHandler = new G4CrossSectionHandler(); crossSectionHandler->Clear(); G4String crossSectionFile = "penelope/ph-cs-pen-"; crossSectionHandler->LoadData(crossSectionFile); shellCrossSectionHandler = new G4CrossSectionHandler(); shellCrossSectionHandler->Clear(); crossSectionFile = "penelope/ph-ss-cs-pen-"; shellCrossSectionHandler->LoadShellData(crossSectionFile); //This is used to retrieve cross section values later on crossSectionHandler->BuildMeanFreePathForMaterials(); if (verboseLevel > 2) G4cout << "Loaded cross section files for PenelopePhotoElectric" << G4endl; if (verboseLevel > 0) { G4cout << "Penelope Photo-Electric model is initialized " << G4endl << "Energy range: " << LowEnergyLimit() / MeV << " MeV - " << HighEnergyLimit() / GeV << " GeV" << G4endl; } if(isInitialised) return; fParticleChange = GetParticleChangeForGamma(); isInitialised = true; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom( const G4ParticleDefinition*, G4double energy, G4double Z, G4double, G4double, G4double) { // // Penelope model. Use data-driven approach for cross section estimate (and // also shell sampling from a given atom). Data are from the Livermore database // D.E. Cullen et al., Report UCRL-50400 (1989) // if (verboseLevel > 3) G4cout << "Calling ComputeCrossSectionPerAtom() of G4PenelopePhotoElectricModel" << G4endl; G4int iZ = (G4int) Z; // if (!crossSectionHandler) // VI: should not be // { // G4cout << "G4PenelopePhotoElectricModel::ComputeCrossSectionPerAtom" << G4endl; // G4cout << "The cross section handler is not correctly initialized" << G4endl; // G4Exception(); // } G4double cs = crossSectionHandler->FindValue(iZ,energy); if (verboseLevel > 2) G4cout << "Photoelectric cross section at " << energy/MeV << " MeV for Z=" << Z << " = " << cs/barn << " barn" << G4endl; return cs; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopePhotoElectricModel::SampleSecondaries(std::vector* fvect, const G4MaterialCutsCouple* couple, const G4DynamicParticle* aDynamicGamma, G4double, G4double) { // // Photoelectric effect, Penelope model // // The target atom and the target shell are sampled according to the Livermore // database // D.E. Cullen et al., Report UCRL-50400 (1989) // The angular distribution of the electron in the final state is sampled // according to the Sauter distribution from // F. Sauter, Ann. Phys. 11 (1931) 454 // The energy of the final electron is given by the initial photon energy minus // the binding energy. Fluorescence de-excitation is subsequently produced // (to fill the vacancy) according to the general Geant4 G4DeexcitationManager: // J. Stepanek, Comp. Phys. Comm. 1206 pp 1-1-9 (1997) if (verboseLevel > 3) G4cout << "Calling SamplingSecondaries() of G4PenelopePhotoElectricModel" << G4endl; G4double photonEnergy = aDynamicGamma->GetKineticEnergy(); // always kill primary fParticleChange->ProposeTrackStatus(fStopAndKill); fParticleChange->SetProposedKineticEnergy(0.); if (photonEnergy <= fIntrinsicLowEnergyLimit) { fParticleChange->ProposeLocalEnergyDeposit(photonEnergy); return ; } G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection(); // Select randomly one element in the current material if (verboseLevel > 2) G4cout << "Going to select element in " << couple->GetMaterial()->GetName() << G4endl; //use crossSectionHandler instead of G4EmElementSelector because in this case //the dimension of the table is equal to the dimension of the database //(less interpolation errors) G4int Z = crossSectionHandler->SelectRandomAtom(couple,photonEnergy); if (verboseLevel > 2) G4cout << "Selected Z = " << Z << G4endl; // Select the ionised shell in the current atom according to shell cross sections size_t shellIndex = shellCrossSectionHandler->SelectRandomShell(Z,photonEnergy); // Retrieve the corresponding identifier and binding energy of the selected shell const G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance(); //The number of shell cross section possibly reported in the Penelope database //might be different from the number of shells in the G4AtomicTransitionManager //(namely, Penelope may contain more shell, especially for very light elements). //In order to avoid a warning message from the G4AtomicTransitionManager, I //add this protection. Results are anyway changed, because when G4AtomicTransitionManager //has a shellID>maxID, it sets the shellID to the last valid shell. size_t numberOfShells = (size_t) transitionManager->NumberOfShells(Z); if (shellIndex >= numberOfShells) shellIndex = numberOfShells-1; const G4AtomicShell* shell = transitionManager->Shell(Z,shellIndex); G4double bindingEnergy = shell->BindingEnergy(); G4int shellId = shell->ShellId(); G4double localEnergyDeposit = 0.0; // Primary outcoming electron G4double eKineticEnergy = photonEnergy - bindingEnergy; // There may be cases where the binding energy of the selected shell is > photon energy // In such cases do not generate secondaries if (eKineticEnergy > 0.) { //Now check if the electron is above cuts: if so, it is created explicitely //VI: checking cut here provides inconsistency in testing // if (eKineticEnergy > cutE) // The electron is created // Direction sampled from the Sauter distribution G4double cosTheta = SampleElectronDirection(eKineticEnergy); G4double sinTheta = std::sqrt(1-cosTheta*cosTheta); G4double phi = twopi * G4UniformRand() ; G4double dirx = sinTheta * std::cos(phi); G4double diry = sinTheta * std::sin(phi); G4double dirz = cosTheta ; G4ThreeVector electronDirection(dirx,diry,dirz); //electron direction electronDirection.rotateUz(photonDirection); G4DynamicParticle* electron = new G4DynamicParticle (G4Electron::Electron(), electronDirection, eKineticEnergy); fvect->push_back(electron); } // else // { // localEnergyDeposit += eKineticEnergy; // eKineticEnergy = 0; // } // } else { bindingEnergy = photonEnergy; } G4double energyInFluorescence = 0; //testing purposes //Now, take care of fluorescence, if required if(DeexcitationFlag() && Z > 5) { const G4ProductionCutsTable* theCoupleTable= G4ProductionCutsTable::GetProductionCutsTable(); size_t indx = couple->GetIndex(); G4double cutG = (*(theCoupleTable->GetEnergyCutsVector(0)))[indx]; G4double cutE = (*(theCoupleTable->GetEnergyCutsVector(1)))[indx]; // Protection to avoid generating photons in the unphysical case of // shell binding energy > photon energy if (bindingEnergy > cutG || bindingEnergy > cutE) { deexcitationManager.SetCutForSecondaryPhotons(cutG); deexcitationManager.SetCutForAugerElectrons(cutE); std::vector* photonVector = deexcitationManager.GenerateParticles(Z,shellId); //Check for secondaries if(photonVector) { for (size_t k=0; k< photonVector->size(); k++) { G4DynamicParticle* aPhoton = (*photonVector)[k]; if (aPhoton) { G4double itsEnergy = aPhoton->GetKineticEnergy(); if (itsEnergy <= bindingEnergy) { if(aPhoton->GetDefinition() == G4Gamma::Gamma()) energyInFluorescence += itsEnergy; bindingEnergy -= itsEnergy; fvect->push_back(aPhoton); } else { delete aPhoton; (*photonVector)[k] = 0; } } } delete photonVector; } } } //Residual energy is deposited locally localEnergyDeposit += bindingEnergy; if (localEnergyDeposit < 0) { G4cout << "WARNING - " << "G4PenelopePhotoElectric::PostStepDoIt - Negative energy deposit" << G4endl; localEnergyDeposit = 0; } fParticleChange->ProposeLocalEnergyDeposit(localEnergyDeposit); if (verboseLevel > 1) { G4cout << "-----------------------------------------------------------" << G4endl; G4cout << "Energy balance from G4PenelopePhotoElectric" << G4endl; G4cout << "Incoming photon energy: " << photonEnergy/keV << " keV" << G4endl; G4cout << "-----------------------------------------------------------" << G4endl; if (eKineticEnergy) G4cout << "Outgoing electron " << eKineticEnergy/keV << " keV" << G4endl; G4cout << "Fluorescence: " << energyInFluorescence/keV << " keV" << G4endl; G4cout << "Local energy deposit " << localEnergyDeposit/keV << " keV" << G4endl; G4cout << "Total final state: " << (eKineticEnergy+energyInFluorescence+localEnergyDeposit)/keV << " keV" << G4endl; G4cout << "-----------------------------------------------------------" << G4endl; } if (verboseLevel > 0) { G4double energyDiff = std::fabs(eKineticEnergy+energyInFluorescence+localEnergyDeposit-photonEnergy); if (energyDiff > 0.05*keV) G4cout << "Warning from G4PenelopePhotoElectric: problem with energy conservation: " << (eKineticEnergy+energyInFluorescence+localEnergyDeposit)/keV << " keV (final) vs. " << photonEnergy/keV << " keV (initial)" << G4endl; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... void G4PenelopePhotoElectricModel::ActivateAuger(G4bool augerbool) { if (!DeexcitationFlag() && augerbool) { G4cout << "WARNING - G4PenelopePhotoElectricModel" << G4endl; G4cout << "The use of the Atomic Deexcitation Manager is set to false " << G4endl; G4cout << "Therefore, Auger electrons will be not generated anyway" << G4endl; } deexcitationManager.ActivateAugerElectronProduction(augerbool); if (verboseLevel > 1) G4cout << "Auger production set to " << augerbool << G4endl; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... G4double G4PenelopePhotoElectricModel::SampleElectronDirection(G4double energy) { G4double costheta = 1.0; if (energy>1*GeV) return costheta; //1) initialize energy-dependent variables // Variable naming according to Eq. (2.24) of Penelope Manual // (pag. 44) G4double gamma = 1.0 + energy/electron_mass_c2; G4double gamma2 = gamma*gamma; G4double beta = std::sqrt((gamma2-1.0)/gamma2); // ac corresponds to "A" of Eq. (2.31) // G4double ac = (1.0/beta) - 1.0; G4double a1 = 0.5*beta*gamma*(gamma-1.0)*(gamma-2.0); G4double a2 = ac + 2.0; G4double gtmax = 2.0*(a1 + 1.0/ac); G4double tsam = 0; G4double gtr = 0; //2) sampling. Eq. (2.31) of Penelope Manual // tsam = 1-std::cos(theta) // gtr = rejection function according to Eq. (2.28) do{ G4double rand = G4UniformRand(); tsam = 2.0*ac * (2.0*rand + a2*std::sqrt(rand)) / (a2*a2 - 4.0*rand); gtr = (2.0 - tsam) * (a1 + 1.0/(ac+tsam)); }while(G4UniformRand()*gtmax > gtr); costheta = 1.0-tsam; return costheta; }