| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // -------------------------------------------------------------------
|
|---|
| 28 | //
|
|---|
| 29 | // GEANT4 Class file
|
|---|
| 30 | //
|
|---|
| 31 | //
|
|---|
| 32 | // File name: G4PhotoElectricAngularGeneratorPolarized
|
|---|
| 33 | //
|
|---|
| 34 | // Author: A. C. Farinha, L. Peralta, P. Rodrigues and A. Trindade
|
|---|
| 35 | //
|
|---|
| 36 | // Creation date:
|
|---|
| 37 | //
|
|---|
| 38 | // Modifications:
|
|---|
| 39 | // 10 January 2006
|
|---|
| 40 | //
|
|---|
| 41 | // Class Description:
|
|---|
| 42 | //
|
|---|
| 43 | // Concrete class for PhotoElectric Electron Angular Polarized Distribution Generation
|
|---|
| 44 | //
|
|---|
| 45 | // Class Description:
|
|---|
| 46 | // PhotoElectric Electron Angular Generator based on the general Gavrila photoelectron angular distribution.
|
|---|
| 47 | // Includes polarization effects for K and L1 atomic shells, according to Gavrila (1959, 1961).
|
|---|
| 48 | // For higher shells the L1 cross-section is used.
|
|---|
| 49 | //
|
|---|
| 50 | // The Gavrila photoelectron angular distribution is a complex function which can not be sampled using
|
|---|
| 51 | // the inverse-transform method (James 1980). Instead a more general approach based on the one already
|
|---|
| 52 | // used to sample bremsstrahlung 2BN cross section (G4Generator2BN, Peralta, 2005) was used.
|
|---|
| 53 | //
|
|---|
| 54 | // M. Gavrila, "Relativistic K-Shell Photoeffect", Phys. Rev. 113, 514-526 (1959)
|
|---|
| 55 | // M. Gavrila, "Relativistic L-Shell Photoeffect", Phys. Rev. 124, 1132-1141 (1961)
|
|---|
| 56 | // F. James, Rept. on Prog. in Phys. 43, 1145 (1980)
|
|---|
| 57 | // L. Peralta et al., "A new low-energy bremsstrahlung generator for GEANT4", Radiat. Prot. Dosimetry. 116, 59-64 (2005)
|
|---|
| 58 | //
|
|---|
| 59 | //
|
|---|
| 60 | // -------------------------------------------------------------------
|
|---|
| 61 | //
|
|---|
| 62 | //
|
|---|
| 63 |
|
|---|
| 64 | #include "G4PhotoElectricAngularGeneratorPolarized.hh"
|
|---|
| 65 | #include "G4RotationMatrix.hh"
|
|---|
| 66 | #include "Randomize.hh"
|
|---|
| 67 |
|
|---|
| 68 | //
|
|---|
| 69 |
|
|---|
| 70 | G4PhotoElectricAngularGeneratorPolarized::G4PhotoElectricAngularGeneratorPolarized(const G4String& name):G4VPhotoElectricAngularDistribution(name)
|
|---|
| 71 | {
|
|---|
| 72 | const G4int arrayDim = 980;
|
|---|
| 73 |
|
|---|
| 74 | //minimum electron beta parameter allowed
|
|---|
| 75 | betaArray[0] = 0.02;
|
|---|
| 76 | //beta step
|
|---|
| 77 | betaArray[1] = 0.001;
|
|---|
| 78 | //maximum index array for a and c tables
|
|---|
| 79 | betaArray[2] = arrayDim - 1;
|
|---|
| 80 |
|
|---|
| 81 | // read Majorant Surface Parameters. This are required in order to generate Gavrila angular photoelectron distribution
|
|---|
| 82 | for(G4int level = 0; level < 2; level++){
|
|---|
| 83 |
|
|---|
| 84 | char nameChar0[100] = "ftab0.dat"; // K-shell Majorant Surface Parameters
|
|---|
| 85 | char nameChar1[100] = "ftab1.dat"; // L-shell Majorant Surface Parameters
|
|---|
| 86 |
|
|---|
| 87 | G4String filename;
|
|---|
| 88 | if(level == 0) filename = nameChar0;
|
|---|
| 89 | if(level == 1) filename = nameChar1;
|
|---|
| 90 |
|
|---|
| 91 | char* path = getenv("G4LEDATA");
|
|---|
| 92 | if (!path)
|
|---|
| 93 | {
|
|---|
| 94 | G4String excep = "G4EMDataSet - G4LEDATA environment variable not set";
|
|---|
| 95 | G4Exception(excep);
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | G4String pathString(path);
|
|---|
| 99 | G4String dirFile = pathString + "/photoelectric_angular/" + filename;
|
|---|
| 100 | FILE *infile;
|
|---|
| 101 | infile = fopen(dirFile,"r");
|
|---|
| 102 | if (infile == 0)
|
|---|
| 103 | {
|
|---|
| 104 | G4String excep = "G4PhotoElectricAngularGeneratorPolarized - data file: " + dirFile + " not found";
|
|---|
| 105 | G4Exception(excep);
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | // Read parameters into tables. The parameters are function of incident electron energy and shell level
|
|---|
| 109 | G4float aRead,cRead, beta;
|
|---|
| 110 | for(G4int i=0 ; i<arrayDim ;i++){
|
|---|
| 111 | fscanf(infile,"%f\t %e\t %e",&beta,&aRead,&cRead);
|
|---|
| 112 | aMajorantSurfaceParameterTable[i][level] = aRead;
|
|---|
| 113 | cMajorantSurfaceParameterTable[i][level] = cRead;
|
|---|
| 114 | }
|
|---|
| 115 | fclose(infile);
|
|---|
| 116 |
|
|---|
| 117 | }
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | //
|
|---|
| 121 |
|
|---|
| 122 | G4PhotoElectricAngularGeneratorPolarized::~G4PhotoElectricAngularGeneratorPolarized()
|
|---|
| 123 | {;}
|
|---|
| 124 |
|
|---|
| 125 | //
|
|---|
| 126 |
|
|---|
| 127 | G4ThreeVector G4PhotoElectricAngularGeneratorPolarized::GetPhotoElectronDirection(const G4ThreeVector& direction, const G4double eKineticEnergy,
|
|---|
| 128 | const G4ThreeVector& polarization, const G4int shellId) const
|
|---|
| 129 | {
|
|---|
| 130 | // Calculate Lorentz term (gamma) and beta parameters
|
|---|
| 131 | G4double gamma = 1. + eKineticEnergy/electron_mass_c2;
|
|---|
| 132 | G4double beta = std::sqrt(gamma*gamma-1.)/gamma;
|
|---|
| 133 |
|
|---|
| 134 | G4double theta, phi = 0;
|
|---|
| 135 | G4double aBeta = 0; // Majorant surface parameter (function of the outgoing electron kinetic energy)
|
|---|
| 136 | G4double cBeta = 0; // Majorant surface parameter (function of the outgoing electron kinetic energy)
|
|---|
| 137 |
|
|---|
| 138 | G4int shellLevel = 0;
|
|---|
| 139 | if(shellId < 2) shellLevel = 0; // K-shell // Polarized model for K-shell
|
|---|
| 140 | if(shellId >= 2) shellLevel = 1; // L1-shell // Polarized model for L1 and higher shells
|
|---|
| 141 |
|
|---|
| 142 | // For the outgoing kinetic energy find the current majorant surface parameters
|
|---|
| 143 | PhotoElectronGetMajorantSurfaceAandCParameters( shellLevel, beta, &aBeta, &cBeta);
|
|---|
| 144 |
|
|---|
| 145 | // Generate pho and theta according to the shell level and beta parameter of the electron
|
|---|
| 146 | PhotoElectronGeneratePhiAndTheta(shellLevel, beta, aBeta, cBeta, &phi, &theta);
|
|---|
| 147 |
|
|---|
| 148 | // Determine the rotation matrix
|
|---|
| 149 | G4RotationMatrix rotation = PhotoElectronRotationMatrix(direction, polarization);
|
|---|
| 150 |
|
|---|
| 151 | // Compute final direction of the outgoing electron
|
|---|
| 152 | G4ThreeVector final_direction = PhotoElectronComputeFinalDirection(rotation, theta, phi);
|
|---|
| 153 |
|
|---|
| 154 | return final_direction;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | //
|
|---|
| 158 |
|
|---|
| 159 | void G4PhotoElectricAngularGeneratorPolarized::PhotoElectronGeneratePhiAndTheta(const G4int shellLevel, const G4double beta,
|
|---|
| 160 | const G4double aBeta, const G4double cBeta,
|
|---|
| 161 | G4double *pphi, G4double *ptheta) const
|
|---|
| 162 | {
|
|---|
| 163 | G4double rand1, rand2, rand3 = 0;
|
|---|
| 164 | G4double phi = 0;
|
|---|
| 165 | G4double theta = 0;
|
|---|
| 166 | G4double crossSectionValue = 0;
|
|---|
| 167 | G4double crossSectionMajorantFunctionValue = 0;
|
|---|
| 168 | G4double maxBeta = 0;
|
|---|
| 169 |
|
|---|
| 170 | do {
|
|---|
| 171 |
|
|---|
| 172 | rand1 = G4UniformRand();
|
|---|
| 173 | rand2 = G4UniformRand();
|
|---|
| 174 | rand3 = G4UniformRand();
|
|---|
| 175 |
|
|---|
| 176 | phi=2*pi*rand1;
|
|---|
| 177 |
|
|---|
| 178 | if(shellLevel == 0){
|
|---|
| 179 |
|
|---|
| 180 | // Polarized Gavrila Cross-Section for K-shell (1959)
|
|---|
| 181 | theta=std::sqrt(((std::exp(rand2*std::log(1+cBeta*pi*pi)))-1)/cBeta);
|
|---|
| 182 | crossSectionMajorantFunctionValue = CrossSectionMajorantFunction(theta, cBeta);
|
|---|
| 183 | crossSectionValue = DSigmaKshellGavrila1959(beta, theta, phi);
|
|---|
| 184 |
|
|---|
| 185 | } else {
|
|---|
| 186 |
|
|---|
| 187 | // Polarized Gavrila Cross-Section for other shells (L1-shell) (1961)
|
|---|
| 188 | theta = std::sqrt(((std::exp(rand2*std::log(1+cBeta*pi*pi)))-1)/cBeta);
|
|---|
| 189 | crossSectionMajorantFunctionValue = CrossSectionMajorantFunction(theta, cBeta);
|
|---|
| 190 | crossSectionValue = DSigmaL1shellGavrila(beta, theta, phi);
|
|---|
| 191 |
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | maxBeta=rand3*aBeta*crossSectionMajorantFunctionValue;
|
|---|
| 195 |
|
|---|
| 196 | }while(maxBeta > crossSectionValue);
|
|---|
| 197 |
|
|---|
| 198 | *pphi = phi;
|
|---|
| 199 | *ptheta = theta;
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | //
|
|---|
| 203 |
|
|---|
| 204 | G4double G4PhotoElectricAngularGeneratorPolarized::CrossSectionMajorantFunction(const G4double theta, const G4double cBeta) const
|
|---|
| 205 | {
|
|---|
| 206 | // Compute Majorant Function
|
|---|
| 207 | G4double crossSectionMajorantFunctionValue = 0;
|
|---|
| 208 | crossSectionMajorantFunctionValue = theta/(1+cBeta*theta*theta);
|
|---|
| 209 | return crossSectionMajorantFunctionValue;
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | //
|
|---|
| 213 |
|
|---|
| 214 | G4double G4PhotoElectricAngularGeneratorPolarized::DSigmaKshellGavrila1959(const G4double beta, const G4double theta, const G4double phi) const
|
|---|
| 215 | {
|
|---|
| 216 |
|
|---|
| 217 | //Double differential K shell cross-section (Gavrila 1959)
|
|---|
| 218 |
|
|---|
| 219 | G4double beta2 = beta*beta;
|
|---|
| 220 | G4double oneBeta2 = 1 - beta2;
|
|---|
| 221 | G4double sqrtOneBeta2 = std::sqrt(oneBeta2);
|
|---|
| 222 | G4double oneBeta2_to_3_2 = std::pow(oneBeta2,1.5);
|
|---|
| 223 | G4double cosTheta = std::cos(theta);
|
|---|
| 224 | G4double sinTheta2 = std::sin(theta)*std::sin(theta);
|
|---|
| 225 | G4double cosPhi2 = std::cos(phi)*std::cos(phi);
|
|---|
| 226 | G4double oneBetaCosTheta = 1-beta*cosTheta;
|
|---|
| 227 | G4double dsigma = 0;
|
|---|
| 228 | G4double firstTerm = 0;
|
|---|
| 229 | G4double secondTerm = 0;
|
|---|
| 230 |
|
|---|
| 231 | firstTerm = sinTheta2*cosPhi2/std::pow(oneBetaCosTheta,4)-(1 - sqrtOneBeta2)/(2*oneBeta2) *
|
|---|
| 232 | (sinTheta2 * cosPhi2)/std::pow(oneBetaCosTheta,3) + (1-sqrtOneBeta2)*
|
|---|
| 233 | (1-sqrtOneBeta2)/(4*oneBeta2_to_3_2) * sinTheta2/std::pow(oneBetaCosTheta,3);
|
|---|
| 234 |
|
|---|
| 235 | secondTerm = std::sqrt(1 - sqrtOneBeta2)/(std::pow(2.,3.5)*beta2*std::pow(oneBetaCosTheta,2.5)) *
|
|---|
| 236 | (4*beta2/sqrtOneBeta2 * sinTheta2*cosPhi2/oneBetaCosTheta + 4*beta/oneBeta2 * cosTheta * cosPhi2
|
|---|
| 237 | - 4*(1-sqrtOneBeta2)/oneBeta2 *(1+cosPhi2) - beta2 * (1-sqrtOneBeta2)/oneBeta2 * sinTheta2/oneBetaCosTheta
|
|---|
| 238 | + 4*beta2*(1-sqrtOneBeta2)/oneBeta2_to_3_2 - 4*beta*(1-sqrtOneBeta2)*(1-sqrtOneBeta2)/oneBeta2_to_3_2 * cosTheta)
|
|---|
| 239 | + (1-sqrtOneBeta2)/(4*beta2*oneBetaCosTheta*oneBetaCosTheta) * (beta/oneBeta2 - 2/oneBeta2 * cosTheta * cosPhi2 +
|
|---|
| 240 | (1-sqrtOneBeta2)/oneBeta2_to_3_2 * cosTheta - beta * (1-sqrtOneBeta2)/oneBeta2_to_3_2);
|
|---|
| 241 |
|
|---|
| 242 | dsigma = ( firstTerm*(1-pi*fine_structure_const/beta) + secondTerm*(pi*fine_structure_const) );
|
|---|
| 243 |
|
|---|
| 244 | return dsigma;
|
|---|
| 245 | }
|
|---|
| 246 |
|
|---|
| 247 | //
|
|---|
| 248 |
|
|---|
| 249 | G4double G4PhotoElectricAngularGeneratorPolarized::DSigmaL1shellGavrila(const G4double beta, const G4double theta, const G4double phi) const
|
|---|
| 250 | {
|
|---|
| 251 |
|
|---|
| 252 | //Double differential L1 shell cross-section (Gavrila 1961)
|
|---|
| 253 |
|
|---|
| 254 | G4double beta2 = beta*beta;
|
|---|
| 255 | G4double oneBeta2 = 1-beta2;
|
|---|
| 256 | G4double sqrtOneBeta2 = std::sqrt(oneBeta2);
|
|---|
| 257 | G4double oneBeta2_to_3_2=std::pow(oneBeta2,1.5);
|
|---|
| 258 | G4double cosTheta = std::cos(theta);
|
|---|
| 259 | G4double sinTheta2 =std::sin(theta)*std::sin(theta);
|
|---|
| 260 | G4double cosPhi2 = std::cos(phi)*std::cos(phi);
|
|---|
| 261 | G4double oneBetaCosTheta = 1-beta*cosTheta;
|
|---|
| 262 |
|
|---|
| 263 | G4double dsigma = 0;
|
|---|
| 264 | G4double firstTerm = 0;
|
|---|
| 265 | G4double secondTerm = 0;
|
|---|
| 266 |
|
|---|
| 267 | firstTerm = sinTheta2*cosPhi2/std::pow(oneBetaCosTheta,4)-(1 - sqrtOneBeta2)/(2*oneBeta2)
|
|---|
| 268 | * (sinTheta2 * cosPhi2)/std::pow(oneBetaCosTheta,3) + (1-sqrtOneBeta2)*
|
|---|
| 269 | (1-sqrtOneBeta2)/(4*oneBeta2_to_3_2) * sinTheta2/std::pow(oneBetaCosTheta,3);
|
|---|
| 270 |
|
|---|
| 271 | secondTerm = std::sqrt(1 - sqrtOneBeta2)/(std::pow(2.,3.5)*beta2*std::pow(oneBetaCosTheta,2.5)) *
|
|---|
| 272 | (4*beta2/sqrtOneBeta2 * sinTheta2*cosPhi2/oneBetaCosTheta + 4*beta/oneBeta2 * cosTheta * cosPhi2
|
|---|
| 273 | - 4*(1-sqrtOneBeta2)/oneBeta2 *(1+cosPhi2) - beta2 * (1-sqrtOneBeta2)/oneBeta2 * sinTheta2/oneBetaCosTheta
|
|---|
| 274 | + 4*beta2*(1-sqrtOneBeta2)/oneBeta2_to_3_2 - 4*beta*(1-sqrtOneBeta2)*(1-sqrtOneBeta2)/oneBeta2_to_3_2 * cosTheta)
|
|---|
| 275 | + (1-sqrtOneBeta2)/(4*beta2*oneBetaCosTheta*oneBetaCosTheta) * (beta/oneBeta2 - 2/oneBeta2 * cosTheta * cosPhi2 +
|
|---|
| 276 | (1-sqrtOneBeta2)/oneBeta2_to_3_2*cosTheta - beta*(1-sqrtOneBeta2)/oneBeta2_to_3_2);
|
|---|
| 277 |
|
|---|
| 278 | dsigma = ( firstTerm*(1-pi*fine_structure_const/beta) + secondTerm*(pi*fine_structure_const) );
|
|---|
| 279 |
|
|---|
| 280 | return dsigma;
|
|---|
| 281 | }
|
|---|
| 282 |
|
|---|
| 283 | G4double G4PhotoElectricAngularGeneratorPolarized::GetMax(const G4double arg1, const G4double arg2) const
|
|---|
| 284 | {
|
|---|
| 285 | if (arg1 > arg2)
|
|---|
| 286 | return arg1;
|
|---|
| 287 | else
|
|---|
| 288 | return arg2;
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 | //
|
|---|
| 292 |
|
|---|
| 293 | G4RotationMatrix G4PhotoElectricAngularGeneratorPolarized::PhotoElectronRotationMatrix(const G4ThreeVector& direction,
|
|---|
| 294 | const G4ThreeVector& polarization) const
|
|---|
| 295 | {
|
|---|
| 296 | G4double mK = direction.mag();
|
|---|
| 297 | G4double mS = polarization.mag();
|
|---|
| 298 | G4ThreeVector polarization2 = polarization;
|
|---|
| 299 | const G4double kTolerance = 1e-6;
|
|---|
| 300 |
|
|---|
| 301 | if(!(polarization.isOrthogonal(direction,kTolerance)) || mS == 0){
|
|---|
| 302 | G4ThreeVector d0 = direction.unit();
|
|---|
| 303 | G4ThreeVector a1 = SetPerpendicularVector(d0);
|
|---|
| 304 | G4ThreeVector a0 = a1.unit();
|
|---|
| 305 | G4double rand1 = G4UniformRand();
|
|---|
| 306 | G4double angle = twopi*rand1;
|
|---|
| 307 | G4ThreeVector b0 = d0.cross(a0);
|
|---|
| 308 | G4ThreeVector c;
|
|---|
| 309 | c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x());
|
|---|
| 310 | c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y());
|
|---|
| 311 | c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z());
|
|---|
| 312 | polarization2 = c.unit();
|
|---|
| 313 | mS = polarization2.mag();
|
|---|
| 314 | }else
|
|---|
| 315 | {
|
|---|
| 316 | if ( polarization.howOrthogonal(direction) != 0)
|
|---|
| 317 | {
|
|---|
| 318 | polarization2 = polarization - polarization.dot(direction)/direction.dot(direction) * direction;
|
|---|
| 319 | }
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 | G4ThreeVector direction2 = direction/mK;
|
|---|
| 323 | polarization2 = polarization2/mS;
|
|---|
| 324 |
|
|---|
| 325 | G4ThreeVector y = direction2.cross(polarization2);
|
|---|
| 326 |
|
|---|
| 327 | G4RotationMatrix R(polarization2,y,direction2);
|
|---|
| 328 | return R;
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | void G4PhotoElectricAngularGeneratorPolarized::PhotoElectronGetMajorantSurfaceAandCParameters(const G4int shellLevel, const G4double beta,G4double *majorantSurfaceParameterA, G4double *majorantSurfaceParameterC) const
|
|---|
| 332 | {
|
|---|
| 333 | // This member function finds for a given shell and beta value of the outgoing electron the correct Majorant Surface parameters
|
|---|
| 334 |
|
|---|
| 335 | G4double aBeta,cBeta;
|
|---|
| 336 | G4double bMin,bStep;
|
|---|
| 337 | G4int indexMax;
|
|---|
| 338 | G4int level = shellLevel;
|
|---|
| 339 | if(shellLevel > 1) level = 1; // protection since only K and L1 polarized double differential cross-sections were implemented
|
|---|
| 340 |
|
|---|
| 341 | bMin = betaArray[0];
|
|---|
| 342 | bStep = betaArray[1];
|
|---|
| 343 | indexMax = (G4int)betaArray[2];
|
|---|
| 344 | const G4double kBias = 1e-9;
|
|---|
| 345 |
|
|---|
| 346 | G4int k = (G4int)((beta-bMin+kBias)/bStep);
|
|---|
| 347 |
|
|---|
| 348 | if(k < 0)
|
|---|
| 349 | k = 0;
|
|---|
| 350 | if(k > indexMax)
|
|---|
| 351 | k = indexMax;
|
|---|
| 352 |
|
|---|
| 353 | if(k == 0)
|
|---|
| 354 | aBeta = GetMax(aMajorantSurfaceParameterTable[k][level],aMajorantSurfaceParameterTable[k+1][level]);
|
|---|
| 355 | else if(k==indexMax)
|
|---|
| 356 | aBeta = GetMax(aMajorantSurfaceParameterTable[k-1][level],aMajorantSurfaceParameterTable[k][level]);
|
|---|
| 357 | else{
|
|---|
| 358 | aBeta = GetMax(aMajorantSurfaceParameterTable[k-1][level],aMajorantSurfaceParameterTable[k][level]);
|
|---|
| 359 | aBeta = GetMax(aBeta,aMajorantSurfaceParameterTable[k+1][level]);
|
|---|
| 360 | }
|
|---|
| 361 |
|
|---|
| 362 | if(k == 0)
|
|---|
| 363 | cBeta = GetMax(cMajorantSurfaceParameterTable[k][level],cMajorantSurfaceParameterTable[k+1][level]);
|
|---|
| 364 | else if(k == indexMax)
|
|---|
| 365 | cBeta = GetMax(cMajorantSurfaceParameterTable[k-1][level],cMajorantSurfaceParameterTable[k][level]);
|
|---|
| 366 | else{
|
|---|
| 367 | cBeta = GetMax(cMajorantSurfaceParameterTable[k-1][level],cMajorantSurfaceParameterTable[k][level]);
|
|---|
| 368 | cBeta = GetMax(cBeta,cMajorantSurfaceParameterTable[k+1][level]);
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | *majorantSurfaceParameterA = aBeta;
|
|---|
| 372 | *majorantSurfaceParameterC = cBeta;
|
|---|
| 373 |
|
|---|
| 374 | }
|
|---|
| 375 |
|
|---|
| 376 |
|
|---|
| 377 | //
|
|---|
| 378 | G4ThreeVector G4PhotoElectricAngularGeneratorPolarized::PhotoElectronComputeFinalDirection(const G4RotationMatrix& rotation, const G4double theta, const G4double phi) const
|
|---|
| 379 | {
|
|---|
| 380 |
|
|---|
| 381 | //computes the photoelectron momentum unitary vector
|
|---|
| 382 | G4double px = std::cos(phi)*std::sin(theta);
|
|---|
| 383 | G4double py = std::sin(phi)*std::sin(theta);
|
|---|
| 384 | G4double pz = std::cos(theta);
|
|---|
| 385 |
|
|---|
| 386 | G4ThreeVector samplingDirection(px,py,pz);
|
|---|
| 387 |
|
|---|
| 388 | G4ThreeVector outgoingDirection = rotation*samplingDirection;
|
|---|
| 389 | return outgoingDirection;
|
|---|
| 390 | }
|
|---|
| 391 |
|
|---|
| 392 | //
|
|---|
| 393 |
|
|---|
| 394 | void G4PhotoElectricAngularGeneratorPolarized::PrintGeneratorInformation() const
|
|---|
| 395 | {
|
|---|
| 396 | G4cout << "\n" << G4endl;
|
|---|
| 397 | G4cout << "Polarized Photoelectric Angular Generator" << G4endl;
|
|---|
| 398 | G4cout << "PhotoElectric Electron Angular Generator based on the general Gavrila photoelectron angular distribution" << G4endl;
|
|---|
| 399 | G4cout << "Includes polarization effects for K and L1 atomic shells, according to Gavrilla (1959, 1961)." << G4endl;
|
|---|
| 400 | G4cout << "For higher shells the L1 cross-section is used." << G4endl;
|
|---|
| 401 | G4cout << "(see Physics Reference Manual) \n" << G4endl;
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | G4ThreeVector G4PhotoElectricAngularGeneratorPolarized::SetPerpendicularVector(const G4ThreeVector& a) const
|
|---|
| 405 | {
|
|---|
| 406 | G4double dx = a.x();
|
|---|
| 407 | G4double dy = a.y();
|
|---|
| 408 | G4double dz = a.z();
|
|---|
| 409 | G4double x = dx < 0.0 ? -dx : dx;
|
|---|
| 410 | G4double y = dy < 0.0 ? -dy : dy;
|
|---|
| 411 | G4double z = dz < 0.0 ? -dz : dz;
|
|---|
| 412 | if (x < y) {
|
|---|
| 413 | return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy);
|
|---|
| 414 | }else{
|
|---|
| 415 | return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0);
|
|---|
| 416 | }
|
|---|
| 417 | }
|
|---|