// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4VLowEnergyDiscretePhotonProcess.cc,v 1.6 2009/06/10 13:32:36 mantero Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // -------------------------------------------------------------- // // File name: G4VLowEnergyDiscretePhotonProcess.cc // // Author: Capra Riccardo // // Creation date: May 2005 // // History: // ----------- // 02 May 2005 R. Capra 1st implementation // //---------------------------------------------------------------- #include "G4VLowEnergyDiscretePhotonProcess.hh" #include "G4String.hh" #include "G4CrossSectionHandler.hh" #include "G4CompositeEMDataSet.hh" #include "G4Gamma.hh" #include "G4Track.hh" #include "G4DynamicParticle.hh" #include "G4ThreeVector.hh" #include "Randomize.hh" // G4UniformRand G4VLowEnergyDiscretePhotonProcess :: G4VLowEnergyDiscretePhotonProcess(const G4String& processName, const G4String& aCrossSectionFileName, const G4String& aScatterFileName, G4VDataSetAlgorithm* aScatterInterpolation, G4double aLowEnergyLimit, G4double aHighEnergyLimit) : G4VLowEnergyTestableDiscreteProcess(processName), lowEnergyLimit(aLowEnergyLimit), highEnergyLimit(aHighEnergyLimit), crossSectionFileName(aCrossSectionFileName), meanFreePathTable(0) { crossSectionHandler = new G4CrossSectionHandler(); scatterFunctionData = new G4CompositeEMDataSet(aScatterInterpolation, 1., 1.); scatterFunctionData->LoadData(aScatterFileName); if (verboseLevel > 0) { G4cout << GetProcessName() << " is created " << G4endl << "Energy range: " << lowEnergyLimit / keV << " keV - " << highEnergyLimit / GeV << " GeV" << G4endl; } } G4VLowEnergyDiscretePhotonProcess::~G4VLowEnergyDiscretePhotonProcess(void) { if (meanFreePathTable) delete meanFreePathTable; delete crossSectionHandler; delete scatterFunctionData; } G4bool G4VLowEnergyDiscretePhotonProcess::IsApplicable(const G4ParticleDefinition& particleDefinition) { return (&particleDefinition)==G4Gamma::Gamma(); } void G4VLowEnergyDiscretePhotonProcess::BuildPhysicsTable(const G4ParticleDefinition& /*photon*/) { crossSectionHandler->Clear(); crossSectionHandler->LoadData(crossSectionFileName); if (meanFreePathTable) delete meanFreePathTable; meanFreePathTable=crossSectionHandler->BuildMeanFreePathForMaterials(); } G4double G4VLowEnergyDiscretePhotonProcess::GetMeanFreePath(const G4Track& aTrack, G4double /*previousStepSize*/, G4ForceCondition* /*condition*/) { G4double photonEnergy; photonEnergy = aTrack.GetDynamicParticle()->GetKineticEnergy(); if (photonEnergy < lowEnergyLimit) return DBL_MAX; if (photonEnergy > highEnergyLimit) photonEnergy=highEnergyLimit; size_t materialIndex; materialIndex = aTrack.GetMaterialCutsCouple()->GetIndex(); return meanFreePathTable->FindValue(photonEnergy, materialIndex); } G4ThreeVector G4VLowEnergyDiscretePhotonProcess::GetPhotonPolarization(const G4DynamicParticle& photon) { G4ThreeVector photonMomentumDirection; G4ThreeVector photonPolarization; photonPolarization = photon.GetPolarization(); photonMomentumDirection = photon.GetMomentumDirection(); if ((!photonPolarization.isOrthogonal(photonMomentumDirection, 1e-6)) || photonPolarization.mag()==0.) { // if |photonPolarization|==0. or |photonPolarization * photonDirection0| > 1e-6 * |photonPolarization ^ photonDirection0| // then polarization is choosen randomly. G4ThreeVector e1(photonMomentumDirection.orthogonal().unit()); G4ThreeVector e2(photonMomentumDirection.cross(e1).unit()); G4double angle(G4UniformRand() * twopi); e1*=std::cos(angle); e2*=std::sin(angle); photonPolarization=e1+e2; } else if (photonPolarization.howOrthogonal(photonMomentumDirection) != 0.) { // if |photonPolarization * photonDirection0| != 0. // then polarization is made orthonormal; photonPolarization=photonPolarization.perpPart(photonMomentumDirection); } return photonPolarization.unit(); }