// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4eCrossSectionExcitationEmfietzoglou.cc,v 1.1 2007/05/04 10:16:06 pia Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // $Id: G4eCrossSectionExcitationEmfietzoglou.cc,v 1.1 2007/05/04 10:16:06 pia Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // Contact Author: Maria Grazia Pia (Maria.Grazia.Pia@cern.ch) // // Reference: TNS Geant4-DNA paper // Reference for implementation model: NIM. 155, pp. 145-156, 1978 // History: // ----------- // Date Name Modification // 28 Apr 2007 M.G. Pia Created in compliance with design described in TNS paper // // ------------------------------------------------------------------- // Class description: // Geant4-DNA Cross total cross section for electron elastic scattering in water // Further documentation available from http://www.ge.infn.it/geant4/dna // ------------------------------------------------------------------- #include "G4eCrossSectionExcitationEmfietzoglou.hh" #include "G4Track.hh" #include "G4DynamicParticle.hh" #include "G4ParticleDefinition.hh" #include "G4Track.hh" #include "G4Electron.hh" #include "G4DynamicParticle.hh" #include "G4Material.hh" #include "Randomize.hh" G4eCrossSectionExcitationEmfietzoglou::G4eCrossSectionExcitationEmfietzoglou() { name = "eCrossSectionExcitationEmfietzoglou"; lowEnergyLimit = 7. * eV; highEnergyLimit = 10 * keV; // if (verboseLevel > 0) // { // G4cout << name << " is created " << G4endl // << "Energy range: " // << lowEnergyLimit / keV << " keV - " // << highEnergyLimit / GeV << " GeV" // << G4endl; // } } G4eCrossSectionExcitationEmfietzoglou::~G4eCrossSectionExcitationEmfietzoglou() { } G4double G4eCrossSectionExcitationEmfietzoglou::CrossSection(const G4Track& track) { const G4DynamicParticle* particle = track.GetDynamicParticle(); G4double k = particle->GetKineticEnergy(); // G4Material* material = track.GetMaterial(); // Assume that the material is water; proper algorithm to calculate correctly for any material to be inserted here // Take into account 5 excitation levels (D. Emfietzoglou et al., NIM B 193, pp. 71-78, 2002. G4int i = 5; G4double crossSection(0.); while (i>0) { i--; crossSection += PartialCrossSection(k,i); } return crossSection; } G4double G4eCrossSectionExcitationEmfietzoglou::PartialCrossSection(G4double k, G4int excitationLevel) { // Aj T // sigma(T) = ------------- (Bj / T) ln(Cj ---) [1 - Bj / T]^Pj // 2 pi alpha0 R // // T is the incoming electron kinetic energy // alpha0 is the Bohr Radius (Bohr_radius) // Aj, Bj, Cj & Pj are parameters that can be found in Emfietzoglou's papers // // // From Phys. Med. Biol. 48 (2003) 2355-2371, D.Emfietzoglou, // Monte Carlo Simulation of the energy loss of low energy electrons in liquid Water k = k / eV; const G4double sigma0 = (10. / 3.343e22) * cm2; const G4double aj[] = {0.0205, 0.0209, 0.0130, 0.0026, 0.0025}; const G4double cj[] = {4.9801, 3.3850, 2.8095, 1.9242, 3.4624}; const G4double pj[] = {0.4757, 0.3483, 0.4443, 0.3429, 0.4379}; const G4double r = 13.6 * eV; G4double cross = 0.; if (k < EnergyConstant(excitationLevel)) return cross; G4double excitationSigma = ( aj[excitationLevel] / (2. * pi * Bohr_radius)) * (EnergyConstant(excitationLevel) / k) * std::log(cj[excitationLevel] * (k / r)) * std::pow((1. - (EnergyConstant(excitationLevel) / k)), pj[excitationLevel]); G4cout << "Bohr radius = " << Bohr_radius << G4endl; cross = excitationSigma * sigma0; return cross; } G4int G4eCrossSectionExcitationEmfietzoglou::RandomizePartialCrossSection(G4double k) { // Assume 5 excitation levels G4int i = 5; G4double value = 0.; G4double values[5]; while (i>0) { i--; values[i] = PartialCrossSection(k,i); value += values[i]; } value *= G4UniformRand(); i = 5; while (i>0) { i--; if (values[i] > value) return i; value -= values[i]; } // One should never end up here; next statement added to avoid compilation warning // Probably one should throw an exception if one ends up here return 0; } G4double G4eCrossSectionExcitationEmfietzoglou::EnergyConstant(G4int excitationLevel) { const G4double ej[] ={ 8.22*eV, 10.00*eV, 11.24*eV, 12.61*eV, 13.77*eV}; G4double e = ej[excitationLevel]; return e; } //G4bool G4eCrossSectionExcitationEmfietzoglou::IsApplicable(const G4ParticleDefinition& particle) //{ // return ( &particle == G4Electron::Electron() ); //}