| [968] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //$Id: G4ecpssrCrossSection.cc,v 1.5 2008/12/18 13:01:32 gunter Exp $
|
|---|
| [1007] | 27 | // GEANT4 tag $Name: geant4-09-02 $
|
|---|
| [968] | 28 | //
|
|---|
| 29 | // Author: Haifa Ben Abdelouahed
|
|---|
| 30 | //
|
|---|
| 31 | //
|
|---|
| 32 | // History:
|
|---|
| 33 | // -----------
|
|---|
| 34 | // 21 Apr 2008 H. Ben Abdelouahed 1st implementation
|
|---|
| 35 | // 21 Apr 2008 MGP Major revision according to a design iteration
|
|---|
| 36 | //
|
|---|
| 37 | // -------------------------------------------------------------------
|
|---|
| 38 | // Class description:
|
|---|
| 39 | // Low Energy Electromagnetic Physics, Cross section, p ionisation, K shell
|
|---|
| 40 | // Further documentation available from http://www.ge.infn.it/geant4/lowE
|
|---|
| 41 | // -------------------------------------------------------------------
|
|---|
| 42 |
|
|---|
| 43 |
|
|---|
| 44 | #include "globals.hh"
|
|---|
| 45 | #include "G4ecpssrCrossSection.hh"
|
|---|
| 46 | #include "G4AtomicTransitionManager.hh"
|
|---|
| 47 | #include "G4NistManager.hh"
|
|---|
| 48 | #include "G4Proton.hh"
|
|---|
| 49 | #include "G4Alpha.hh"
|
|---|
| 50 | #include <math.h>
|
|---|
| 51 |
|
|---|
| 52 | G4ecpssrCrossSection::G4ecpssrCrossSection()
|
|---|
| 53 | { }
|
|---|
| 54 |
|
|---|
| 55 | G4ecpssrCrossSection::~G4ecpssrCrossSection()
|
|---|
| 56 | { }
|
|---|
| 57 |
|
|---|
| 58 | //---------------------------------this "ExpIntFunction" function allows fast evaluation of the n order exponential integral function En(x)------
|
|---|
| 59 |
|
|---|
| 60 | G4double G4ecpssrCrossSection::ExpIntFunction(G4int n,G4double x)
|
|---|
| 61 |
|
|---|
| 62 | {
|
|---|
| 63 | G4int i;
|
|---|
| 64 | G4int ii;
|
|---|
| 65 | G4int nm1;
|
|---|
| 66 | G4double a;
|
|---|
| 67 | G4double b;
|
|---|
| 68 | G4double c;
|
|---|
| 69 | G4double d;
|
|---|
| 70 | G4double del;
|
|---|
| 71 | G4double fact;
|
|---|
| 72 | G4double h;
|
|---|
| 73 | G4double psi;
|
|---|
| 74 | G4double ans = 0;
|
|---|
| 75 | const G4double euler= 0.5772156649;
|
|---|
| 76 | const G4int maxit= 100;
|
|---|
| 77 | const G4double fpmin = 1.0e-30;
|
|---|
| 78 | const G4double eps = 1.0e-7;
|
|---|
| 79 | nm1=n-1;
|
|---|
| 80 | if (n<0 || x<0.0 || (x==0.0 && (n==0 || n==1)))
|
|---|
| 81 | G4cout << "bad arguments in ExpIntFunction" << G4endl;
|
|---|
| 82 | else {
|
|---|
| 83 | if (n==0) ans=std::exp(-x)/x;
|
|---|
| 84 | else {
|
|---|
| 85 | if (x==0.0) ans=1.0/nm1;
|
|---|
| 86 | else {
|
|---|
| 87 | if (x > 1.0) {
|
|---|
| 88 | b=x+n;
|
|---|
| 89 | c=1.0/fpmin;
|
|---|
| 90 | d=1.0/b;
|
|---|
| 91 | h=d;
|
|---|
| 92 | for (i=1;i<=maxit;i++) {
|
|---|
| 93 | a=-i*(nm1+i);
|
|---|
| 94 | b +=2.0;
|
|---|
| 95 | d=1.0/(a*d+b);
|
|---|
| 96 | c=b+a/c;
|
|---|
| 97 | del=c*d;
|
|---|
| 98 | h *=del;
|
|---|
| 99 | if (std::fabs(del-1.0) < eps) {
|
|---|
| 100 | ans=h*std::exp(-x);
|
|---|
| 101 | return ans;
|
|---|
| 102 | }
|
|---|
| 103 | }
|
|---|
| 104 | } else {
|
|---|
| 105 | ans = (nm1!=0 ? 1.0/nm1 : -std::log(x)-euler);
|
|---|
| 106 | fact=1.0;
|
|---|
| 107 | for (i=1;i<=maxit;i++) {
|
|---|
| 108 | fact *=-x/i;
|
|---|
| 109 | if (i !=nm1) del = -fact/(i-nm1);
|
|---|
| 110 | else {
|
|---|
| 111 | psi = -euler;
|
|---|
| 112 | for (ii=1;ii<=nm1;ii++) psi +=1.0/ii;
|
|---|
| 113 | del=fact*(-std::log(x)+psi);
|
|---|
| 114 | }
|
|---|
| 115 | ans += del;
|
|---|
| 116 | if (std::fabs(del) < std::fabs(ans)*eps) return ans;
|
|---|
| 117 | }
|
|---|
| 118 | }
|
|---|
| 119 | }
|
|---|
| 120 | }
|
|---|
| 121 | }
|
|---|
| 122 | return ans;
|
|---|
| 123 | }
|
|---|
| 124 | //-----------------------------------------------------------------------------------------------------------
|
|---|
| 125 |
|
|---|
| 126 |
|
|---|
| 127 | G4double G4ecpssrCrossSection::CalculateCrossSection(G4int zTarget,G4int zIncident, G4double energyIncident)
|
|---|
| 128 |
|
|---|
| 129 | //this K-CrossSection calculation method is done according to W.Brandt and G.Lapicki, Phys.Rev.A23(1981)//
|
|---|
| 130 |
|
|---|
| 131 | {
|
|---|
| 132 |
|
|---|
| 133 | G4NistManager* massManager = G4NistManager::Instance();
|
|---|
| 134 |
|
|---|
| 135 | G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 136 |
|
|---|
| 137 | G4double massIncident;
|
|---|
| 138 |
|
|---|
| 139 | if (zIncident == 1)
|
|---|
| 140 | {
|
|---|
| 141 | G4Proton* aProtone = G4Proton::Proton();
|
|---|
| 142 |
|
|---|
| 143 | massIncident = aProtone->GetPDGMass();
|
|---|
| 144 | }
|
|---|
| 145 | else
|
|---|
| 146 | {
|
|---|
| 147 | if (zIncident == 2)
|
|---|
| 148 | {
|
|---|
| 149 | G4Alpha* aAlpha = G4Alpha::Alpha();
|
|---|
| 150 |
|
|---|
| 151 | massIncident = aAlpha->GetPDGMass();
|
|---|
| 152 | }
|
|---|
| 153 | else
|
|---|
| 154 | {
|
|---|
| 155 | G4cout << "we can treat only Proton or Alpha incident particles " << G4endl;
|
|---|
| 156 | massIncident =0.;
|
|---|
| 157 | }
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | G4double kBindingEnergy = transitionManager->Shell(zTarget,0)->BindingEnergy();
|
|---|
| 161 |
|
|---|
| 162 | G4double massTarget = (massManager->GetAtomicMassAmu(zTarget))*amu_c2;
|
|---|
| 163 |
|
|---|
| 164 | G4double systemMass =((massIncident*massTarget)/(massIncident+massTarget))/electron_mass_c2;//the mass of the system (projectile, target)
|
|---|
| 165 |
|
|---|
| 166 | const G4double zkshell= 0.3;
|
|---|
| 167 |
|
|---|
| 168 | G4double screenedzTarget = zTarget-zkshell; // screenedzTarget is the screened nuclear charge of the target
|
|---|
| 169 |
|
|---|
| 170 | const G4double rydbergMeV= 13.6e-6;
|
|---|
| 171 |
|
|---|
| 172 | G4double tetaK = kBindingEnergy/((screenedzTarget*screenedzTarget)*rydbergMeV); //tetaK denotes the reduced binding energy of the electron
|
|---|
| 173 |
|
|---|
| 174 | const G4double bohrPow2Barn=(Bohr_radius*Bohr_radius)/barn ;
|
|---|
| 175 |
|
|---|
| 176 | G4double sigma0 = 8.*pi*(zIncident*zIncident)*bohrPow2Barn*std::pow(screenedzTarget,-4.); //sigma0 is the initial cross section of K shell at stable state
|
|---|
| 177 |
|
|---|
| 178 | //---------------------------------------------------------------------------------------------------------------------
|
|---|
| 179 |
|
|---|
| 180 | G4double velocity = CalculateVelocity( zTarget, zIncident, energyIncident); //is the scaled velocity parameter of the system
|
|---|
| 181 |
|
|---|
| 182 | //---------------------------------------------------------------------------------------------------------------------
|
|---|
| 183 |
|
|---|
| 184 | const G4double kAnalyticalApproximation= 1.5;
|
|---|
| 185 |
|
|---|
| 186 | G4double x = kAnalyticalApproximation/velocity;
|
|---|
| 187 |
|
|---|
| 188 | G4double electrIonizationEnergy;
|
|---|
| 189 |
|
|---|
| 190 | if ( x<0.035)
|
|---|
| 191 | {
|
|---|
| 192 | electrIonizationEnergy= 0.75*pi*(std::log(1./(x*x))-1.);
|
|---|
| 193 | }
|
|---|
| 194 | else
|
|---|
| 195 | {
|
|---|
| 196 | if ( x<3.)
|
|---|
| 197 | {
|
|---|
| 198 | electrIonizationEnergy =std::exp(-2.*x)/(0.031+(0.213*std::pow(x,0.5))+(0.005*x)-(0.069*std::pow(x,3./2.))+(0.324*x*x));
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 | else
|
|---|
| 202 | {
|
|---|
| 203 | electrIonizationEnergy =2.*std::exp(-2.*x)/std::pow(x,1.6); }
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | G4double hFunction =(electrIonizationEnergy*2.)/(tetaK*std::pow(velocity,3)); //hFunction represents the correction for polarization effet
|
|---|
| 207 |
|
|---|
| 208 | G4double gFunction = (1.+(9.*velocity)+(31.*velocity*velocity)+(98.*std::pow(velocity,3.))+(12.*std::pow(velocity,4.))+(25.*std::pow(velocity,5.))
|
|---|
| 209 | +(4.2*std::pow(velocity,6.))+(0.515*std::pow(velocity,7.)))/std::pow(1.+velocity,9.); //gFunction represents the correction for binding effet
|
|---|
| 210 |
|
|---|
| 211 | //-----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 212 |
|
|---|
| 213 | G4double sigmaPSS = 1.+(((2.*zIncident)/(screenedzTarget*tetaK))*(gFunction-hFunction)); //describes the perturbed stationnairy state of the affected atomic electon
|
|---|
| 214 |
|
|---|
| 215 | //----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 216 |
|
|---|
| 217 | const G4double cNaturalUnit= 1/fine_structure_const; // it's the speed of light according to Atomic-Unit-System
|
|---|
| 218 |
|
|---|
| 219 | G4double ykFormula=0.4*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(velocity/sigmaPSS);
|
|---|
| 220 |
|
|---|
| 221 | G4double relativityCorrection = std::pow((1.+(1.1*ykFormula*ykFormula)),0.5)+ykFormula;// the relativistic correction parameter
|
|---|
| 222 |
|
|---|
| 223 | G4double reducedVelocity = velocity*std::pow(relativityCorrection,0.5); // presents the reduced collision velocity parameter
|
|---|
| 224 |
|
|---|
| 225 | G4double universalFunction = (std::pow(2.,9.)/45.)*std::pow(reducedVelocity/sigmaPSS,8.)*std::pow((1.+(1.72*(reducedVelocity/sigmaPSS)*(reducedVelocity/sigmaPSS))),-4.);// is the reduced universal cross section
|
|---|
| 226 |
|
|---|
| 227 | //----------------------------------------------------------------------------------------------------------------------
|
|---|
| 228 |
|
|---|
| 229 | G4double sigmaPSSR = (sigma0/(sigmaPSS*tetaK))*universalFunction; //sigmaPSSR is the straight-line K-shell ionization cross section
|
|---|
| 230 |
|
|---|
| 231 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 232 |
|
|---|
| 233 | G4double pssDeltaK = (4./(systemMass*sigmaPSS*tetaK))*(sigmaPSS/velocity)*(sigmaPSS/velocity);
|
|---|
| 234 |
|
|---|
| 235 | G4double energyLoss = std::pow(1-pssDeltaK,0.5); //energyLoss incorporates the straight-line energy-loss
|
|---|
| 236 |
|
|---|
| 237 | G4double energyLossFunction = (std::pow(2.,-9)/8.)*((((9.*energyLoss)-1.)*std::pow(1.+energyLoss,9.))+(((9.*energyLoss)+1.)*std::pow(1.-energyLoss,9.)));//energy loss function
|
|---|
| 238 |
|
|---|
| 239 | //----------------------------------------------------------------------------------------------------------------------------------------------
|
|---|
| 240 |
|
|---|
| 241 | G4double coulombDeflection = (4.*pi*zIncident/systemMass)*std::pow(tetaK*sigmaPSS,-2.)*std::pow(velocity/sigmaPSS,-3.)*(zTarget/screenedzTarget); //incorporates Coulomb deflection parameter
|
|---|
| 242 |
|
|---|
| 243 | G4double cParameter = 2.*coulombDeflection/(energyLoss*(energyLoss+1.));
|
|---|
| 244 |
|
|---|
| 245 |
|
|---|
| 246 | G4double coulombDeflectionFunction = 9.*ExpIntFunction(10,cParameter); //this function describes Coulomb-deflection effect
|
|---|
| 247 |
|
|---|
| 248 | //--------------------------------------------------------------------------------------------------------------------------------------------------
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | G4double crossSection = energyLossFunction* coulombDeflectionFunction*sigmaPSSR; //this ECPSSR cross section is estimated at perturbed-stationnairy-state(PSS)
|
|---|
| 252 | //and it's reduced by the energy-loss(E),the Coulomb deflection(C),
|
|---|
| 253 | //and the relativity(R) effects
|
|---|
| 254 |
|
|---|
| 255 | //--------------------------------------------------------------------------------------------------------------------------------------------------
|
|---|
| 256 |
|
|---|
| 257 | return crossSection;
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | G4double G4ecpssrCrossSection::CalculateVelocity(G4int zTarget, G4int zIncident, G4double energyIncident)
|
|---|
| 261 |
|
|---|
| 262 | {
|
|---|
| 263 |
|
|---|
| 264 | G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 265 |
|
|---|
| 266 | G4double kBindingEnergy = (transitionManager->Shell(zTarget,0)->BindingEnergy())/MeV;
|
|---|
| 267 |
|
|---|
| 268 | G4double massIncident;
|
|---|
| 269 |
|
|---|
| 270 | if (zIncident == 1)
|
|---|
| 271 | {
|
|---|
| 272 | G4Proton* aProtone = G4Proton::Proton();
|
|---|
| 273 |
|
|---|
| 274 | massIncident = aProtone->GetPDGMass();
|
|---|
| 275 | }
|
|---|
| 276 | else
|
|---|
| 277 | {
|
|---|
| 278 | if (zIncident == 2)
|
|---|
| 279 | {
|
|---|
| 280 | G4Alpha* aAlpha = G4Alpha::Alpha();
|
|---|
| 281 |
|
|---|
| 282 | massIncident = aAlpha->GetPDGMass();
|
|---|
| 283 | }
|
|---|
| 284 | else
|
|---|
| 285 | {
|
|---|
| 286 | G4cout << "we can treat only Proton or Alpha incident particles " << G4endl;
|
|---|
| 287 | massIncident =0.;
|
|---|
| 288 | }
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 | const G4double zkshell= 0.3;
|
|---|
| 292 |
|
|---|
| 293 | G4double screenedzTarget = zTarget- zkshell;
|
|---|
| 294 |
|
|---|
| 295 | const G4double rydbergMeV= 13.6e-6;
|
|---|
| 296 |
|
|---|
| 297 | G4double tetaK = kBindingEnergy/(screenedzTarget*screenedzTarget*rydbergMeV);
|
|---|
| 298 |
|
|---|
| 299 | G4double velocity =(2./(tetaK*screenedzTarget))*std::pow(((energyIncident*electron_mass_c2)/(massIncident*rydbergMeV)),0.5);
|
|---|
| 300 |
|
|---|
| 301 | return velocity;
|
|---|
| 302 | }
|
|---|
| 303 |
|
|---|