| [1197] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //$Id: G4ecpssrLiCrossSection.cc,v 1.7 2009/11/11 09:14:53 mantero Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-03-cand-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // Author: Haifa Ben Abdelouahed
|
|---|
| 30 | //
|
|---|
| 31 | //
|
|---|
| 32 | // History:
|
|---|
| 33 | // -----------
|
|---|
| 34 | // 23 Apr 2008 H. Ben Abdelouahed 1st implementation
|
|---|
| 35 | // 28 Apr 2008 MGP Major revision according to a design iteration
|
|---|
| 36 | // 29 Apr 2009 ALF Updated Desing for Integration
|
|---|
| 37 | // 02 May 2009 ALF + Haifa L1,L2,L3 Extensions
|
|---|
| 38 | // 11 Nov 2009 ALF code cleaning for the Dec release
|
|---|
| 39 | //
|
|---|
| 40 | // -------------------------------------------------------------------
|
|---|
| 41 | // Class description:
|
|---|
| 42 | // Low Energy Electromagnetic Physics, Cross section, p and alpha ionisation, L shell
|
|---|
| 43 | // Further documentation available from http://www.ge.infn.it/geant4/lowE
|
|---|
| 44 | // -------------------------------------------------------------------
|
|---|
| 45 |
|
|---|
| 46 |
|
|---|
| 47 | #include "globals.hh"
|
|---|
| 48 | #include "G4ecpssrLiCrossSection.hh"
|
|---|
| 49 | #include "G4AtomicTransitionManager.hh"
|
|---|
| 50 | #include "G4NistManager.hh"
|
|---|
| 51 | #include "G4Proton.hh"
|
|---|
| 52 | #include "G4Alpha.hh"
|
|---|
| 53 | #include <math.h>
|
|---|
| 54 |
|
|---|
| 55 | G4ecpssrLiCrossSection::G4ecpssrLiCrossSection()
|
|---|
| 56 | {
|
|---|
| 57 |
|
|---|
| 58 |
|
|---|
| 59 | // Storing FLi data needed for 0.2 to 3.0 velocities region
|
|---|
| 60 |
|
|---|
| 61 | char *path = getenv("G4LEDATA");
|
|---|
| 62 |
|
|---|
| 63 | if (!path)
|
|---|
| 64 | G4Exception("G4ecpssrLCrossSection::CalculateCrossSection: G4LEDDATA environment variable not set");
|
|---|
| 65 |
|
|---|
| 66 | std::ostringstream fileName1;
|
|---|
| 67 | std::ostringstream fileName2;
|
|---|
| 68 | fileName1 << path << "/pixe/uf/FL1.dat";
|
|---|
| 69 | fileName2 << path << "/pixe/uf/FL2.dat";
|
|---|
| 70 |
|
|---|
| 71 | std::ifstream FL1(fileName1.str().c_str());
|
|---|
| 72 | std::ifstream FL2(fileName1.str().c_str());
|
|---|
| 73 |
|
|---|
| 74 |
|
|---|
| 75 | if (!FL1) G4Exception("G4ecpssrLCrossSection::CalculateCrossSection: error opening FL1 data file");
|
|---|
| 76 | if (!FL2) G4Exception("G4ecpssrLCrossSection::CalculateCrossSection: error opening FL2 data file");
|
|---|
| 77 |
|
|---|
| 78 | dummyVec.push_back(0.);
|
|---|
| 79 |
|
|---|
| 80 | while(!FL1.eof())
|
|---|
| 81 | {
|
|---|
| 82 | double x1;
|
|---|
| 83 | double y1;
|
|---|
| 84 |
|
|---|
| 85 | FL1>>x1>>y1;
|
|---|
| 86 |
|
|---|
| 87 | // Mandatory vector initialization
|
|---|
| 88 | if (x1 != dummyVec.back())
|
|---|
| 89 | {
|
|---|
| 90 | dummyVec.push_back(x1);
|
|---|
| 91 | aVecMap[x1].push_back(-1.);
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | FL1>>FL1Data[x1][y1];
|
|---|
| 95 |
|
|---|
| 96 | if (y1 != aVecMap[x1].back()) aVecMap[x1].push_back(y1);
|
|---|
| 97 | }
|
|---|
| 98 | while(!FL2.eof())
|
|---|
| 99 | {
|
|---|
| 100 | double x2;
|
|---|
| 101 | double y2;
|
|---|
| 102 |
|
|---|
| 103 | FL2>>x2>>y2;
|
|---|
| 104 |
|
|---|
| 105 | // Mandatory vector initialization
|
|---|
| 106 | if (x2 != dummyVec.back())
|
|---|
| 107 | {
|
|---|
| 108 | dummyVec.push_back(x2);
|
|---|
| 109 | aVecMap[x2].push_back(-1.);
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | FL2>>FL2Data[x2][y2];
|
|---|
| 113 |
|
|---|
| 114 | if (y2 != aVecMap[x2].back()) aVecMap[x2].push_back(y2);
|
|---|
| 115 | }
|
|---|
| 116 |
|
|---|
| 117 |
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | G4ecpssrLiCrossSection::~G4ecpssrLiCrossSection()
|
|---|
| 121 | { }
|
|---|
| 122 |
|
|---|
| 123 | //---------------------------------this "ExpIntFunction" function allows fast evaluation of the n order exponential integral function En(x)------
|
|---|
| 124 |
|
|---|
| 125 | G4double G4ecpssrLiCrossSection::ExpIntFunction(G4int n,G4double x)
|
|---|
| 126 |
|
|---|
| 127 | {
|
|---|
| 128 | G4int i;
|
|---|
| 129 | G4int ii;
|
|---|
| 130 | G4int nm1;
|
|---|
| 131 | G4double a;
|
|---|
| 132 | G4double b;
|
|---|
| 133 | G4double c;
|
|---|
| 134 | G4double d;
|
|---|
| 135 | G4double del;
|
|---|
| 136 | G4double fact;
|
|---|
| 137 | G4double h;
|
|---|
| 138 | G4double psi;
|
|---|
| 139 | G4double ans = 0;
|
|---|
| 140 | const G4double euler= 0.5772156649;
|
|---|
| 141 | const G4int maxit= 100;
|
|---|
| 142 | const G4double fpmin = 1.0e-30;
|
|---|
| 143 | const G4double eps = 1.0e-7;
|
|---|
| 144 | nm1=n-1;
|
|---|
| 145 | if (n<0 || x<0.0 || (x==0.0 && (n==0 || n==1)))
|
|---|
| 146 | G4cout << "bad arguments in ExpIntFunction" << G4endl;
|
|---|
| 147 | else {
|
|---|
| 148 | if (n==0) ans=exp(-x)/x;
|
|---|
| 149 | else {
|
|---|
| 150 | if (x==0.0) ans=1.0/nm1;
|
|---|
| 151 | else {
|
|---|
| 152 | if (x > 1.0) {
|
|---|
| 153 | b=x+n;
|
|---|
| 154 | c=1.0/fpmin;
|
|---|
| 155 | d=1.0/b;
|
|---|
| 156 | h=d;
|
|---|
| 157 | for (i=1;i<=maxit;i++) {
|
|---|
| 158 | a=-i*(nm1+i);
|
|---|
| 159 | b +=2.0;
|
|---|
| 160 | d=1.0/(a*d+b);
|
|---|
| 161 | c=b+a/c;
|
|---|
| 162 | del=c*d;
|
|---|
| 163 | h *=del;
|
|---|
| 164 | if (fabs(del-1.0) < eps) {
|
|---|
| 165 | ans=h*exp(-x);
|
|---|
| 166 | return ans;
|
|---|
| 167 | }
|
|---|
| 168 | }
|
|---|
| 169 | } else {
|
|---|
| 170 | ans = (nm1!=0 ? 1.0/nm1 : -log(x)-euler);
|
|---|
| 171 | fact=1.0;
|
|---|
| 172 | for (i=1;i<=maxit;i++) {
|
|---|
| 173 | fact *=-x/i;
|
|---|
| 174 | if (i !=nm1) del = -fact/(i-nm1);
|
|---|
| 175 | else {
|
|---|
| 176 | psi = -euler;
|
|---|
| 177 | for (ii=1;ii<=nm1;ii++) psi +=1.0/ii;
|
|---|
| 178 | del=fact*(-log(x)+psi);
|
|---|
| 179 | }
|
|---|
| 180 | ans += del;
|
|---|
| 181 | if (fabs(del) < fabs(ans)*eps) return ans;
|
|---|
| 182 | }
|
|---|
| 183 | }
|
|---|
| 184 | }
|
|---|
| 185 | }
|
|---|
| 186 | }
|
|---|
| 187 | return ans;
|
|---|
| 188 | }
|
|---|
| 189 | //-----------------------------------------------------------------------------------------------------------
|
|---|
| 190 |
|
|---|
| 191 |
|
|---|
| 192 | G4double G4ecpssrLiCrossSection::CalculateL1CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
|
|---|
| 193 |
|
|---|
| 194 | //this L-CrossSection calculation method is done according to W.Brandt and G.Lapicki, Phys.Rev.A23(1981)//
|
|---|
| 195 |
|
|---|
| 196 | {
|
|---|
| 197 |
|
|---|
| 198 | G4NistManager* massManager = G4NistManager::Instance();
|
|---|
| 199 |
|
|---|
| 200 | G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 201 |
|
|---|
| 202 |
|
|---|
| 203 | G4int zIncident = 0;
|
|---|
| 204 | G4Proton* aProtone = G4Proton::Proton();
|
|---|
| 205 | G4Alpha* aAlpha = G4Alpha::Alpha();
|
|---|
| 206 |
|
|---|
| 207 | if (massIncident == aProtone->GetPDGMass() )
|
|---|
| 208 | {
|
|---|
| 209 |
|
|---|
| 210 | zIncident = (G4int)((aProtone->GetPDGCharge())/eplus);
|
|---|
| 211 |
|
|---|
| 212 | //G4cout << "zincident:" << zIncident << G4endl;
|
|---|
| 213 | }
|
|---|
| 214 | else
|
|---|
| 215 | {
|
|---|
| 216 | if (massIncident == aAlpha->GetPDGMass())
|
|---|
| 217 | {
|
|---|
| 218 |
|
|---|
| 219 | zIncident =(G4int) ((aAlpha->GetPDGCharge())/eplus);
|
|---|
| 220 |
|
|---|
| 221 | //G4cout << "zincident:" << zIncident << G4endl;
|
|---|
| 222 | }
|
|---|
| 223 | else
|
|---|
| 224 | {
|
|---|
| 225 | G4cout << "we can treat only Proton or Alpha incident particles " << G4endl;
|
|---|
| 226 | massIncident =0.;
|
|---|
| 227 | }
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 |
|
|---|
| 231 | G4double l1BindingEnergy = transitionManager->Shell(zTarget,1)->BindingEnergy();
|
|---|
| 232 |
|
|---|
| 233 |
|
|---|
| 234 |
|
|---|
| 235 |
|
|---|
| 236 |
|
|---|
| 237 |
|
|---|
| 238 | G4double massTarget = (massManager->GetAtomicMassAmu(zTarget))*amu_c2;
|
|---|
| 239 |
|
|---|
| 240 | G4double systemMass =((massIncident*massTarget)/(massIncident+massTarget))/electron_mass_c2;//the mass of the system (projectile, target)
|
|---|
| 241 |
|
|---|
| 242 | const G4double zlshell= 4.15;
|
|---|
| 243 |
|
|---|
| 244 | G4double screenedzTarget = zTarget-zlshell; // screenedzTarget is the screened nuclear charge of the target
|
|---|
| 245 |
|
|---|
| 246 | const G4double rydbergMeV= 13.6056923e-6;
|
|---|
| 247 |
|
|---|
| 248 | const G4double nl= 2.; // nl is the quantum number of the L shell
|
|---|
| 249 |
|
|---|
| 250 | G4double tetal1 = (l1BindingEnergy*nl*nl)/((screenedzTarget*screenedzTarget)*rydbergMeV); //tetal1 denotes the reduced L1-shell-binding-energy of the electron
|
|---|
| 251 |
|
|---|
| 252 |
|
|---|
| 253 |
|
|---|
| 254 |
|
|---|
| 255 |
|
|---|
| 256 |
|
|---|
| 257 | const G4double bohrPow2Barn=(Bohr_radius*Bohr_radius)/barn ;
|
|---|
| 258 |
|
|---|
| 259 | G4double sigma0 = 8.*pi*(zIncident*zIncident)*bohrPow2Barn*pow(screenedzTarget,-4.); //sigma0 is the initial cross section of L shell at stable state
|
|---|
| 260 |
|
|---|
| 261 | //---------------------------------------------------------------------------------------------------------------------
|
|---|
| 262 |
|
|---|
| 263 | G4double velocityl1 = CalculateVelocity(1, zTarget, massIncident, energyIncident); //is the scaled velocity parameter of the system
|
|---|
| 264 |
|
|---|
| 265 |
|
|---|
| 266 |
|
|---|
| 267 |
|
|---|
| 268 | //---------------------------------------------------------------------------------------------------------------------
|
|---|
| 269 |
|
|---|
| 270 | const G4double l1AnalyticalApproximation= 1.5;
|
|---|
| 271 |
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | G4double x1 = nl*l1AnalyticalApproximation/velocityl1;
|
|---|
| 275 |
|
|---|
| 276 |
|
|---|
| 277 |
|
|---|
| 278 |
|
|---|
| 279 |
|
|---|
| 280 | //-----------------------------------------x of l1 sub shell--------------------------------------
|
|---|
| 281 |
|
|---|
| 282 | G4double electrIonizationEnergyl1;
|
|---|
| 283 |
|
|---|
| 284 |
|
|---|
| 285 | if ( x1<0.035 && x1>= 0.)
|
|---|
| 286 | {
|
|---|
| 287 | electrIonizationEnergyl1= 0.75*pi*(log(1./(x1*x1))-1.);
|
|---|
| 288 | }
|
|---|
| 289 | else
|
|---|
| 290 | {
|
|---|
| 291 | if ( x1<3.&& x1>=0.035)
|
|---|
| 292 | {
|
|---|
| 293 | electrIonizationEnergyl1 =exp(-2.*x1)/(0.031+(0.213*pow(x1,0.5))+(0.005*x1)-(0.069*pow(x1,3./2.))+(0.324*x1*x1));
|
|---|
| 294 | }
|
|---|
| 295 |
|
|---|
| 296 | else
|
|---|
| 297 | {
|
|---|
| 298 | if ( x1<=11.&& x1>=3.) {
|
|---|
| 299 | electrIonizationEnergyl1 =2.*exp(-2.*x1)/pow(x1,1.6);
|
|---|
| 300 | }
|
|---|
| 301 | else {
|
|---|
| 302 | electrIonizationEnergyl1 =0.;
|
|---|
| 303 | }
|
|---|
| 304 | }
|
|---|
| 305 | }
|
|---|
| 306 |
|
|---|
| 307 |
|
|---|
| 308 |
|
|---|
| 309 |
|
|---|
| 310 |
|
|---|
| 311 | //-------------------------------------------------------- h and g functions for l1 -------------------------------------------------
|
|---|
| 312 |
|
|---|
| 313 |
|
|---|
| 314 | G4double hFunctionl1 =(electrIonizationEnergyl1*2.*nl)/(tetal1*pow(velocityl1,3)); //hFunction represents the correction for polarization effet
|
|---|
| 315 |
|
|---|
| 316 |
|
|---|
| 317 | G4double gFunctionl1 = (1.+(9.*velocityl1)+(31.*velocityl1*velocityl1)+(49.*pow(velocityl1,3.))+(162.*pow(velocityl1,4.))+(63.*pow(velocityl1,5.))
|
|---|
| 318 | +(18.*pow(velocityl1,6.))+(1.97*pow(velocityl1,7.)))/pow(1.+velocityl1,9.); //gFunction represents the correction for binding effet
|
|---|
| 319 |
|
|---|
| 320 |
|
|---|
| 321 |
|
|---|
| 322 |
|
|---|
| 323 | //-----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 324 |
|
|---|
| 325 | G4double sigmaPSS_l1 = 1.+(((2.*zIncident)/(screenedzTarget*tetal1))*(gFunctionl1-hFunctionl1)); //describes the perturbed stationnairy state of the affected atomic electon
|
|---|
| 326 |
|
|---|
| 327 |
|
|---|
| 328 |
|
|---|
| 329 |
|
|---|
| 330 |
|
|---|
| 331 |
|
|---|
| 332 |
|
|---|
| 333 | //----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 334 | //const G4double cNaturalUnit= 1/fine_structure_const; // it's the speed of light according to Atomic-Unit-System
|
|---|
| 335 | //--------------------------------------------------------------------------------------------------------------
|
|---|
| 336 |
|
|---|
| 337 | //G4double yl1Formula=0.4*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(nl*(velocityl1/sigmaPSS_l1));
|
|---|
| 338 |
|
|---|
| 339 |
|
|---|
| 340 |
|
|---|
| 341 | //-----------------------------------------------Relativity effect correction L1 -------------------------------------------------------------
|
|---|
| 342 |
|
|---|
| 343 | //G4double relativityCorrectionl1 = pow((1.+(1.1*yl1Formula*yl1Formula)),0.5)+yl1Formula;// the relativistic correction parameter
|
|---|
| 344 | //G4double reducedVelocityl1 = velocityl1*pow(relativityCorrectionl1,0.5); // presents the reduced collision velocity parameter
|
|---|
| 345 |
|
|---|
| 346 |
|
|---|
| 347 |
|
|---|
| 348 |
|
|---|
| 349 |
|
|---|
| 350 |
|
|---|
| 351 |
|
|---|
| 352 | //-------------------------------------------------------------------------------------------------------------------
|
|---|
| 353 | //------------------------------------------------------------UNIVERSAL FUNCTION ---------------------------------
|
|---|
| 354 | //------------------------------------------------------------------------------------------------------------
|
|---|
| 355 | // is the reduced universal cross section
|
|---|
| 356 |
|
|---|
| 357 | G4double universalFunction_l1 ;
|
|---|
| 358 |
|
|---|
| 359 |
|
|---|
| 360 |
|
|---|
| 361 | //-------------------------------------------------------------------------------------------------------------------
|
|---|
| 362 | //------------------------------------------------------------ LIMITS OF ECPSSR MODEL ---------------------------
|
|---|
| 363 | //------------------------------------------------------------------------------------------------------------
|
|---|
| 364 |
|
|---|
| 365 |
|
|---|
| 366 | G4double L1etaOverTheta2 = (energyIncident*electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget)/(sigmaPSS_l1*tetal1)/(sigmaPSS_l1*tetal1);
|
|---|
| 367 |
|
|---|
| 368 |
|
|---|
| 369 | universalFunction_l1 = FunctionFL1((sigmaPSS_l1*tetal1), L1etaOverTheta2);
|
|---|
| 370 |
|
|---|
| 371 |
|
|---|
| 372 |
|
|---|
| 373 |
|
|---|
| 374 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 375 | //--------------------------------------------------------------------------- PSSR Li CROSS SECTION -------------
|
|---|
| 376 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 377 |
|
|---|
| 378 | G4double sigmaPSSR_l1 = (sigma0/(sigmaPSS_l1*tetal1))*universalFunction_l1; //sigmaPSSR is the straight-line L-shell ionization cross section
|
|---|
| 379 |
|
|---|
| 380 |
|
|---|
| 381 |
|
|---|
| 382 | //----------------------------------------------------------------------------------------------------------------------
|
|---|
| 383 |
|
|---|
| 384 | G4double pssDeltal1 = (4./(systemMass*sigmaPSS_l1*tetal1))*(sigmaPSS_l1/velocityl1)*(sigmaPSS_l1/velocityl1);
|
|---|
| 385 |
|
|---|
| 386 |
|
|---|
| 387 |
|
|---|
| 388 | G4double energyLossl1 = pow(1-pssDeltal1,0.5); //energyLoss incorporates the straight-line energy-loss
|
|---|
| 389 |
|
|---|
| 390 |
|
|---|
| 391 |
|
|---|
| 392 |
|
|---|
| 393 |
|
|---|
| 394 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 395 | //----------------------------------------------------------------------------ENERGY LOSS CORRECTION-------------
|
|---|
| 396 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 397 |
|
|---|
| 398 | /*
|
|---|
| 399 | G4double energyLossFunction_L1 = (pow(2.,-9)/8.)*((((9.*energyLossl1)-1.)*pow(1.+energyLossl1,9.))+(((9.*energyLossl1)+1.)*pow(1.-energyLossl1,9.)));
|
|---|
| 400 | G4double energyLossFunction_L2 = (pow(2.,-11)/10.)*((((11.*energyLossl2)-1.)*pow(1.+energyLossl2,11.))+(((11.*energyLossl2)+1.)*pow(1.-energyLossl2,11.)));
|
|---|
| 401 | G4double energyLossFunction_L3 = (pow(2.,-11)/10.)*((((11.*energyLossl3)-1.)*pow(1.+energyLossl3,11.))+(((11.*energyLossl3)+1.)*pow(1.-energyLossl3,11.)));
|
|---|
| 402 | */
|
|---|
| 403 |
|
|---|
| 404 |
|
|---|
| 405 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 406 | //----------------------------------------------------------------------------COULOMB DEFLECTION CORRECTION-------------
|
|---|
| 407 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 408 |
|
|---|
| 409 |
|
|---|
| 410 | G4double coulombDeflectionl1 = (4.*pi*zIncident/systemMass)*pow(tetal1*sigmaPSS_l1,-2.)*pow(velocityl1/sigmaPSS_l1,-3.)*(zTarget/screenedzTarget); //incorporates Coulomb deflection parameter
|
|---|
| 411 |
|
|---|
| 412 |
|
|---|
| 413 |
|
|---|
| 414 |
|
|---|
| 415 | G4double cParameterl1 = 2.*coulombDeflectionl1/(energyLossl1*(energyLossl1+1.));
|
|---|
| 416 |
|
|---|
| 417 |
|
|---|
| 418 |
|
|---|
| 419 | G4double coulombDeflectionFunction_l1 = 9.*ExpIntFunction(10,cParameterl1); //this function describes Coulomb-deflection effect
|
|---|
| 420 |
|
|---|
| 421 |
|
|---|
| 422 |
|
|---|
| 423 | //--------------------------------------------------------------------------------------------------------------------------------------------------
|
|---|
| 424 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 425 | //--------------------------------------------------------------------------- ECPSSR Li CROSS SECTION -------------
|
|---|
| 426 | //-----------------------------------------------------------------------------------------------------------------------
|
|---|
| 427 | //--------------------------------------------------------------------------------------------------------------------------------------------------
|
|---|
| 428 |
|
|---|
| 429 | /*
|
|---|
| 430 | G4double crossSection_L1 = energyLossFunction_L1 * coulombDeflectionFunction_l1 * sigmaPSSR_l1; //this ECPSSR cross section is estimated at perturbed-stationnairy-state(PSS)
|
|---|
| 431 | G4double crossSection_L2 = energyLossFunction_L2 * coulombDeflectionFunction_l2 * sigmaPSSR_l2; //and it's reduced by the energy-loss(E),the Coulomb deflection(C),
|
|---|
| 432 | G4double crossSection_L3 = energyLossFunction_L3 * coulombDeflectionFunction_l3 * sigmaPSSR_l3; //and the relativity(R) effects
|
|---|
| 433 | */
|
|---|
| 434 |
|
|---|
| 435 | G4double crossSection_L1 = coulombDeflectionFunction_l1 * sigmaPSSR_l1;
|
|---|
| 436 |
|
|---|
| 437 |
|
|---|
| 438 | if (crossSection_L1 >= 0) {
|
|---|
| 439 | return crossSection_L1;
|
|---|
| 440 | }
|
|---|
| 441 | else {return 0;}
|
|---|
| 442 | }
|
|---|
| 443 |
|
|---|
| 444 | G4double G4ecpssrLiCrossSection::CalculateL2CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
|
|---|
| 445 |
|
|---|
| 446 | //this L-CrossSection calculation method is done according to W.Brandt and G.Lapicki, Phys.Rev.A23(1981)//
|
|---|
| 447 |
|
|---|
| 448 | {
|
|---|
| 449 |
|
|---|
| 450 |
|
|---|
| 451 | G4NistManager* massManager = G4NistManager::Instance();
|
|---|
| 452 |
|
|---|
| 453 | G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 454 |
|
|---|
| 455 |
|
|---|
| 456 | G4int zIncident = 0;
|
|---|
| 457 | G4Proton* aProtone = G4Proton::Proton();
|
|---|
| 458 | G4Alpha* aAlpha = G4Alpha::Alpha();
|
|---|
| 459 |
|
|---|
| 460 | if (massIncident == aProtone->GetPDGMass() )
|
|---|
| 461 | {
|
|---|
| 462 |
|
|---|
| 463 | zIncident =(G4int) ((aProtone->GetPDGCharge())/eplus);
|
|---|
| 464 |
|
|---|
| 465 | // G4cout << "zincident:" << zIncident << G4endl;
|
|---|
| 466 | }
|
|---|
| 467 | else
|
|---|
| 468 | {
|
|---|
| 469 | if (massIncident == aAlpha->GetPDGMass())
|
|---|
| 470 | {
|
|---|
| 471 |
|
|---|
| 472 | zIncident = (G4int) ((aAlpha->GetPDGCharge())/eplus);
|
|---|
| 473 |
|
|---|
| 474 | // G4cout << "zincident:" << zIncident << G4endl;
|
|---|
| 475 | }
|
|---|
| 476 | else
|
|---|
| 477 | {
|
|---|
| 478 | G4cout << "we can treat only Proton or Alpha incident particles " << G4endl;
|
|---|
| 479 | massIncident =0.;
|
|---|
| 480 | }
|
|---|
| 481 | }
|
|---|
| 482 |
|
|---|
| 483 | G4double l2BindingEnergy = transitionManager->Shell(zTarget,2)->BindingEnergy();
|
|---|
| 484 |
|
|---|
| 485 | G4double massTarget = (massManager->GetAtomicMassAmu(zTarget))*amu_c2;
|
|---|
| 486 | G4double systemMass =((massIncident*massTarget)/(massIncident+massTarget))/electron_mass_c2;//the mass of the system (projectile, target)
|
|---|
| 487 | const G4double zlshell= 4.15;
|
|---|
| 488 | G4double screenedzTarget = zTarget-zlshell; // screenedzTarget is the screened nuclear charge of the target
|
|---|
| 489 | const G4double rydbergMeV= 13.6056923e-6;
|
|---|
| 490 | const G4double nl= 2.; // nl is the quantum number of the L shell
|
|---|
| 491 |
|
|---|
| 492 | G4double tetal2 = (l2BindingEnergy*nl*nl)/((screenedzTarget*screenedzTarget)*rydbergMeV);
|
|---|
| 493 |
|
|---|
| 494 | const G4double bohrPow2Barn=(Bohr_radius*Bohr_radius)/barn ;
|
|---|
| 495 | G4double sigma0 = 8.*pi*(zIncident*zIncident)*bohrPow2Barn*pow(screenedzTarget,-4.); //sigma0 is the initial cross section of L shell at stable state
|
|---|
| 496 |
|
|---|
| 497 | G4double velocityl2 = CalculateVelocity(2, zTarget, massIncident, energyIncident);
|
|---|
| 498 |
|
|---|
| 499 | const G4double l2AnalyticalApproximation= 1.25;
|
|---|
| 500 |
|
|---|
| 501 | G4double x2 = nl*l2AnalyticalApproximation/velocityl2;
|
|---|
| 502 |
|
|---|
| 503 | //---------------------------------------------------------------x of l2 sub shell------------------------------------------
|
|---|
| 504 |
|
|---|
| 505 | G4double electrIonizationEnergyl2;
|
|---|
| 506 |
|
|---|
| 507 |
|
|---|
| 508 | if ( x2<0.035 && x2>= 0.)
|
|---|
| 509 | {
|
|---|
| 510 | electrIonizationEnergyl2= 0.75*pi*(log(1./(x2*x2))-1.);
|
|---|
| 511 | }
|
|---|
| 512 | else
|
|---|
| 513 | {
|
|---|
| 514 | if ( x2<3. && x2 >=0.035)
|
|---|
| 515 | {
|
|---|
| 516 | electrIonizationEnergyl2 =exp(-2.*x2)/(0.031+(0.213*pow(x2,0.5))+(0.005*x2)-(0.069*pow(x2,3./2.))+(0.324*x2*x2));
|
|---|
| 517 | }
|
|---|
| 518 |
|
|---|
| 519 | else
|
|---|
| 520 | {
|
|---|
| 521 |
|
|---|
| 522 | if ( x2<=11.&& x2>=3.) {
|
|---|
| 523 | electrIonizationEnergyl2 =2.*exp(-2.*x2)/pow(x2,1.6);
|
|---|
| 524 | }
|
|---|
| 525 | else {
|
|---|
| 526 | electrIonizationEnergyl2=0.;
|
|---|
| 527 | }
|
|---|
| 528 |
|
|---|
| 529 | }
|
|---|
| 530 | }
|
|---|
| 531 |
|
|---|
| 532 | //----------------------------------------------------------------------------- h and g functions for l2 ----------------------------
|
|---|
| 533 |
|
|---|
| 534 |
|
|---|
| 535 | G4double hFunctionl2 =(electrIonizationEnergyl2*2.*nl)/(tetal2*pow(velocityl2,3)); //hFunction represents the correction for polarization effet
|
|---|
| 536 |
|
|---|
| 537 | G4double gFunctionl2 = (1.+(10.*velocityl2)+(45.*velocityl2*velocityl2)+(102.*pow(velocityl2,3.))+(331.*pow(velocityl2,4.))+(6.7*pow(velocityl2,5.))
|
|---|
| 538 | +(58.*pow(velocityl2,6.))+(7.8*pow(velocityl2,7.))+ (0.888*pow(velocityl2,8.)) )/pow(1.+velocityl2,10.); //gFunction represents the correction for binding effet
|
|---|
| 539 |
|
|---|
| 540 |
|
|---|
| 541 | G4double sigmaPSS_l2 = 1.+(((2.*zIncident)/(screenedzTarget*tetal2))*(gFunctionl2-hFunctionl2));
|
|---|
| 542 |
|
|---|
| 543 | //----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 544 | //const G4double cNaturalUnit= 1/fine_structure_const; // it's the speed of light according to Atomic-Unit-System
|
|---|
| 545 | //--------------------------------------------------------------------------------------------------------------
|
|---|
| 546 |
|
|---|
| 547 | //G4double yl2Formula=0.15*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(velocityl2/sigmaPSS_l2);
|
|---|
| 548 |
|
|---|
| 549 | //-----------------------------------------------Relativity effect correction L2 --------------------------------------------------------------
|
|---|
| 550 |
|
|---|
| 551 | //G4double relativityCorrectionl2 = pow((1.+(1.1*yl2Formula*yl2Formula)),0.5)+yl2Formula;// the relativistic correction parameter
|
|---|
| 552 | // G4double reducedVelocityl2 = velocityl2*pow(relativityCorrectionl2,0.5); // presents the reduced collision velocity parameter
|
|---|
| 553 |
|
|---|
| 554 | G4double L2etaOverTheta2 = (energyIncident*electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget)/(sigmaPSS_l2*tetal2)/(sigmaPSS_l2*tetal2);
|
|---|
| 555 |
|
|---|
| 556 |
|
|---|
| 557 | G4double universalFunction_l2 ;
|
|---|
| 558 |
|
|---|
| 559 |
|
|---|
| 560 | universalFunction_l2 = FunctionFL2((sigmaPSS_l2*tetal2), L2etaOverTheta2);
|
|---|
| 561 |
|
|---|
| 562 | G4double sigmaPSSR_l2 = (sigma0/(sigmaPSS_l2*tetal2))*universalFunction_l2;
|
|---|
| 563 | G4double pssDeltal2 = (4./(systemMass*sigmaPSS_l2*tetal2))*(sigmaPSS_l2/velocityl2)*(sigmaPSS_l2/velocityl2);
|
|---|
| 564 | G4double energyLossl2 = pow(1-pssDeltal2,0.5);
|
|---|
| 565 |
|
|---|
| 566 | G4double coulombDeflectionl2 = (4.*pi*zIncident/systemMass)*pow(tetal2*sigmaPSS_l2,-2.)*pow(velocityl2/sigmaPSS_l2,-3.)*(zTarget/screenedzTarget); //incorporates Coulomb deflection parameter
|
|---|
| 567 | G4double cParameterl2 = 2.*coulombDeflectionl2/(energyLossl2*(energyLossl2+1.));
|
|---|
| 568 | G4double coulombDeflectionFunction_l2 = 11.*ExpIntFunction(12,cParameterl2);
|
|---|
| 569 |
|
|---|
| 570 | G4double crossSection_L2 = coulombDeflectionFunction_l2 * sigmaPSSR_l2 ;
|
|---|
| 571 |
|
|---|
| 572 |
|
|---|
| 573 | if (crossSection_L2 >= 0) {
|
|---|
| 574 | return crossSection_L2;
|
|---|
| 575 | }
|
|---|
| 576 | else {return 0;}
|
|---|
| 577 |
|
|---|
| 578 |
|
|---|
| 579 | }
|
|---|
| 580 |
|
|---|
| 581 |
|
|---|
| 582 | G4double G4ecpssrLiCrossSection::CalculateL3CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
|
|---|
| 583 |
|
|---|
| 584 | //this L-CrossSection calculation method is done according to W.Brandt and G.Lapicki, Phys.Rev.A23(1981)//
|
|---|
| 585 |
|
|---|
| 586 | {
|
|---|
| 587 |
|
|---|
| 588 |
|
|---|
| 589 | G4NistManager* massManager = G4NistManager::Instance();
|
|---|
| 590 |
|
|---|
| 591 | G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 592 |
|
|---|
| 593 |
|
|---|
| 594 | G4int zIncident = 0;
|
|---|
| 595 | G4Proton* aProtone = G4Proton::Proton();
|
|---|
| 596 | G4Alpha* aAlpha = G4Alpha::Alpha();
|
|---|
| 597 |
|
|---|
| 598 | if (massIncident == aProtone->GetPDGMass() )
|
|---|
| 599 | {
|
|---|
| 600 |
|
|---|
| 601 | zIncident = (G4int) ((aProtone->GetPDGCharge())/eplus);
|
|---|
| 602 |
|
|---|
| 603 | // G4cout << "zincident:" << zIncident << G4endl;
|
|---|
| 604 | }
|
|---|
| 605 | else
|
|---|
| 606 | {
|
|---|
| 607 | if (massIncident == aAlpha->GetPDGMass())
|
|---|
| 608 | {
|
|---|
| 609 |
|
|---|
| 610 | zIncident =(G4int) ((aAlpha->GetPDGCharge())/eplus);
|
|---|
| 611 |
|
|---|
| 612 | // G4cout << "zincident:" << zIncident << G4endl;
|
|---|
| 613 | }
|
|---|
| 614 | else
|
|---|
| 615 | {
|
|---|
| 616 | G4cout << "we can treat only Proton or Alpha incident particles " << G4endl;
|
|---|
| 617 | massIncident =0.;
|
|---|
| 618 | }
|
|---|
| 619 | }
|
|---|
| 620 |
|
|---|
| 621 | G4double l3BindingEnergy = transitionManager->Shell(zTarget,3)->BindingEnergy();
|
|---|
| 622 |
|
|---|
| 623 | G4double massTarget = (massManager->GetAtomicMassAmu(zTarget))*amu_c2;
|
|---|
| 624 |
|
|---|
| 625 | G4double systemMass =((massIncident*massTarget)/(massIncident+massTarget))/electron_mass_c2;//the mass of the system (projectile, target)
|
|---|
| 626 |
|
|---|
| 627 | const G4double zlshell= 4.15;
|
|---|
| 628 |
|
|---|
| 629 | G4double screenedzTarget = zTarget-zlshell; // screenedzTarget is the screened nuclear charge of the target
|
|---|
| 630 |
|
|---|
| 631 | const G4double rydbergMeV= 13.6056923e-6;
|
|---|
| 632 |
|
|---|
| 633 | const G4double nl= 2.; // nl is the quantum number of the L shell
|
|---|
| 634 |
|
|---|
| 635 | G4double tetal3 = (l3BindingEnergy*nl*nl)/((screenedzTarget*screenedzTarget)*rydbergMeV);
|
|---|
| 636 |
|
|---|
| 637 |
|
|---|
| 638 |
|
|---|
| 639 | const G4double bohrPow2Barn=(Bohr_radius*Bohr_radius)/barn ;
|
|---|
| 640 |
|
|---|
| 641 | G4double sigma0 = 8.*pi*(zIncident*zIncident)*bohrPow2Barn*pow(screenedzTarget,-4.); //sigma0 is the initial cross section of L shell at stable state
|
|---|
| 642 |
|
|---|
| 643 | //---------------------------------------------------------------------------------------------------------------------
|
|---|
| 644 |
|
|---|
| 645 | G4double velocityl3 = CalculateVelocity(3, zTarget, massIncident, energyIncident);
|
|---|
| 646 |
|
|---|
| 647 | const G4double l3AnalyticalApproximation= 1.25;
|
|---|
| 648 |
|
|---|
| 649 | G4double x3 = nl*l3AnalyticalApproximation/velocityl3;
|
|---|
| 650 |
|
|---|
| 651 |
|
|---|
| 652 | //--------------------------------------------------------------------- x of l3 sub shell---------------------------------
|
|---|
| 653 |
|
|---|
| 654 |
|
|---|
| 655 | G4double electrIonizationEnergyl3;
|
|---|
| 656 |
|
|---|
| 657 |
|
|---|
| 658 | if ( x3<0.035 && x3>=0. )
|
|---|
| 659 | {
|
|---|
| 660 | electrIonizationEnergyl3= 0.75*pi*(log(1./(x3*x3))-1.);
|
|---|
| 661 | }
|
|---|
| 662 | else
|
|---|
| 663 | {
|
|---|
| 664 | if ( x3<3. && x3 >= 0.035)
|
|---|
| 665 | {
|
|---|
| 666 | electrIonizationEnergyl3 =exp(-2.*x3)/(0.031+(0.213*pow(x3,0.5))+(0.005*x3)-(0.069*pow(x3,3./2.))+(0.324*x3*x3));
|
|---|
| 667 | }
|
|---|
| 668 |
|
|---|
| 669 | else
|
|---|
| 670 | {
|
|---|
| 671 | if ( x3<=11.&& x3>=3.) {
|
|---|
| 672 | electrIonizationEnergyl3 =2.*exp(-2.*x3)/pow(x3,1.6);
|
|---|
| 673 | }
|
|---|
| 674 | else {
|
|---|
| 675 | electrIonizationEnergyl3=0.;
|
|---|
| 676 | }
|
|---|
| 677 |
|
|---|
| 678 | }
|
|---|
| 679 | }
|
|---|
| 680 |
|
|---|
| 681 | //------------------------------------------------------------ h and g function for l3 ---------------------------------------------
|
|---|
| 682 |
|
|---|
| 683 |
|
|---|
| 684 | G4double hFunctionl3 =(electrIonizationEnergyl3*2.*nl)/(tetal3*pow(velocityl3,3)); //hFunction represents the correction for polarization effet
|
|---|
| 685 |
|
|---|
| 686 |
|
|---|
| 687 | G4double gFunctionl3 = (1.+(10.*velocityl3)+(45.*velocityl3*velocityl3)+(102.*pow(velocityl3,3.))+(331.*pow(velocityl3,4.))+(6.7*pow(velocityl3,5.))
|
|---|
| 688 | +(58.*pow(velocityl3,6.))+(7.8*pow(velocityl3,7.))+ (0.888*pow(velocityl3,8.)) )/pow(1.+velocityl3,10.); //gFunction represents the correction for binding effet
|
|---|
| 689 | //-----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 690 |
|
|---|
| 691 | G4double sigmaPSS_l3 = 1.+(((2.*zIncident)/(screenedzTarget*tetal3))*(gFunctionl3-hFunctionl3));
|
|---|
| 692 |
|
|---|
| 693 |
|
|---|
| 694 | //----------------------------------------------------------------------------------------------------------------------------
|
|---|
| 695 | //const G4double cNaturalUnit= 1/fine_structure_const; // it's the speed of light according to Atomic-Unit-System
|
|---|
| 696 | //--------------------------------------------------------------------------------------------------------------
|
|---|
| 697 |
|
|---|
| 698 | //G4double yl3Formula=0.15*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(velocityl3/sigmaPSS_l3);
|
|---|
| 699 |
|
|---|
| 700 | //-----------------------------------------------Relativity effect correction L3 --------------------------------------------------------------
|
|---|
| 701 |
|
|---|
| 702 | //G4double relativityCorrectionl3 = pow((1.+(1.1*yl3Formula*yl3Formula)),0.5)+yl3Formula;// the relativistic correction parameter
|
|---|
| 703 | //G4double reducedVelocityl3 = velocityl3*pow(relativityCorrectionl3,0.5); // presents the reduced collision velocity parameter
|
|---|
| 704 |
|
|---|
| 705 | G4double universalFunction_l3 ;
|
|---|
| 706 |
|
|---|
| 707 | G4double L3etaOverTheta2 = (energyIncident*electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget)/(sigmaPSS_l3*tetal3)/(sigmaPSS_l3*tetal3);
|
|---|
| 708 |
|
|---|
| 709 | universalFunction_l3 = 2*FunctionFL2((sigmaPSS_l3*tetal3), L3etaOverTheta2);
|
|---|
| 710 |
|
|---|
| 711 |
|
|---|
| 712 | G4double sigmaPSSR_l3 = (sigma0/(sigmaPSS_l3*tetal3))*universalFunction_l3;
|
|---|
| 713 |
|
|---|
| 714 | G4double pssDeltal3 = (4./(systemMass*sigmaPSS_l3*tetal3))*(sigmaPSS_l3/velocityl3)*(sigmaPSS_l3/velocityl3);
|
|---|
| 715 |
|
|---|
| 716 | G4double energyLossl3 = pow(1-pssDeltal3,0.5);
|
|---|
| 717 |
|
|---|
| 718 | G4double coulombDeflectionl3 = (4.*pi*zIncident/systemMass)*pow(tetal3*sigmaPSS_l3,-2.)*pow(velocityl3/sigmaPSS_l3,-3.)*(zTarget/screenedzTarget); //incorporates Coulomb deflection parameter
|
|---|
| 719 |
|
|---|
| 720 | G4double cParameterl3 = 2.*coulombDeflectionl3/(energyLossl3*(energyLossl3+1.));
|
|---|
| 721 |
|
|---|
| 722 | G4double coulombDeflectionFunction_l3 = 11.*ExpIntFunction(12,cParameterl3);
|
|---|
| 723 |
|
|---|
| 724 | G4double crossSection_L3 = coulombDeflectionFunction_l3 * sigmaPSSR_l3;
|
|---|
| 725 |
|
|---|
| 726 | if (crossSection_L3 >= 0) {
|
|---|
| 727 | return crossSection_L3;
|
|---|
| 728 | }
|
|---|
| 729 | else {return 0;}
|
|---|
| 730 |
|
|---|
| 731 | }
|
|---|
| 732 |
|
|---|
| 733 |
|
|---|
| 734 |
|
|---|
| 735 | G4double G4ecpssrLiCrossSection::CalculateVelocity(G4int subShell, G4int zTarget, G4double massIncident, G4double energyIncident)
|
|---|
| 736 |
|
|---|
| 737 | {
|
|---|
| 738 |
|
|---|
| 739 | G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance();
|
|---|
| 740 |
|
|---|
| 741 | G4double liBindingEnergy = transitionManager->Shell(zTarget,subShell)->BindingEnergy();
|
|---|
| 742 |
|
|---|
| 743 |
|
|---|
| 744 | G4Proton* aProtone = G4Proton::Proton();
|
|---|
| 745 | G4Alpha* aAlpha = G4Alpha::Alpha();
|
|---|
| 746 |
|
|---|
| 747 | if (!(massIncident == aProtone->GetPDGMass() || massIncident == aAlpha->GetPDGMass()))
|
|---|
| 748 | {
|
|---|
| 749 | G4cout << "we can treat only Proton or Alpha incident particles " << G4endl;
|
|---|
| 750 | return 0;
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 |
|
|---|
| 754 | const G4double zlshell= 4.15;
|
|---|
| 755 |
|
|---|
| 756 | G4double screenedzTarget = zTarget- zlshell;
|
|---|
| 757 |
|
|---|
| 758 | const G4double rydbergMeV= 13.6e-6;
|
|---|
| 759 |
|
|---|
| 760 | const G4double nl= 2.; // nl is the quantum number of the L shell
|
|---|
| 761 |
|
|---|
| 762 | G4double tetali = (liBindingEnergy*nl*nl)/(screenedzTarget*screenedzTarget*rydbergMeV);
|
|---|
| 763 |
|
|---|
| 764 | G4double velocity =(2.*nl/(tetali*screenedzTarget))*pow(((energyIncident*electron_mass_c2)/(massIncident*rydbergMeV)),0.5);
|
|---|
| 765 |
|
|---|
| 766 | return velocity;
|
|---|
| 767 | }
|
|---|
| 768 |
|
|---|
| 769 |
|
|---|
| 770 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 771 |
|
|---|
| 772 |
|
|---|
| 773 | G4double G4ecpssrLiCrossSection::FunctionFL1(G4double k, G4double theta)
|
|---|
| 774 | {
|
|---|
| 775 |
|
|---|
| 776 | G4double sigma = 0.;
|
|---|
| 777 | G4double valueT1 = 0;
|
|---|
| 778 | G4double valueT2 = 0;
|
|---|
| 779 | G4double valueE21 = 0;
|
|---|
| 780 | G4double valueE22 = 0;
|
|---|
| 781 | G4double valueE12 = 0;
|
|---|
| 782 | G4double valueE11 = 0;
|
|---|
| 783 | G4double xs11 = 0;
|
|---|
| 784 | G4double xs12 = 0;
|
|---|
| 785 | G4double xs21 = 0;
|
|---|
| 786 | G4double xs22 = 0;
|
|---|
| 787 |
|
|---|
| 788 | // PROTECTION TO ALLOW INTERPOLATION AT MINIMUM AND MAXIMUM EtaK/Theta2 values
|
|---|
| 789 | // (in particular for FK computation at 95 for high velocity formula)
|
|---|
| 790 |
|
|---|
| 791 | if (
|
|---|
| 792 | theta==9.5e-2 ||
|
|---|
| 793 | theta==9.5e-1 ||
|
|---|
| 794 | theta==9.5e+00 ||
|
|---|
| 795 | theta==9.5e+01
|
|---|
| 796 | ) theta=theta-1e-12;
|
|---|
| 797 |
|
|---|
| 798 | if (
|
|---|
| 799 | theta==1.e-2 ||
|
|---|
| 800 | theta==1.e-1 ||
|
|---|
| 801 | theta==1.e+00 ||
|
|---|
| 802 | theta==1.e+01
|
|---|
| 803 | ) theta=theta+1e-12;
|
|---|
| 804 |
|
|---|
| 805 | // END PROTECTION
|
|---|
| 806 |
|
|---|
| 807 | {
|
|---|
| 808 | std::vector<double>::iterator t2 = std::upper_bound(dummyVec.begin(),dummyVec.end(), k);
|
|---|
| 809 | std::vector<double>::iterator t1 = t2-1;
|
|---|
| 810 |
|
|---|
| 811 | std::vector<double>::iterator e12 = std::upper_bound(aVecMap[(*t1)].begin(),aVecMap[(*t1)].end(), theta);
|
|---|
| 812 | std::vector<double>::iterator e11 = e12-1;
|
|---|
| 813 |
|
|---|
| 814 | std::vector<double>::iterator e22 = std::upper_bound(aVecMap[(*t2)].begin(),aVecMap[(*t2)].end(), theta);
|
|---|
| 815 | std::vector<double>::iterator e21 = e22-1;
|
|---|
| 816 |
|
|---|
| 817 | valueT1 =*t1;
|
|---|
| 818 | valueT2 =*t2;
|
|---|
| 819 | valueE21 =*e21;
|
|---|
| 820 | valueE22 =*e22;
|
|---|
| 821 | valueE12 =*e12;
|
|---|
| 822 | valueE11 =*e11;
|
|---|
| 823 |
|
|---|
| 824 | xs11 = FL1Data[valueT1][valueE11];
|
|---|
| 825 | xs12 = FL1Data[valueT1][valueE12];
|
|---|
| 826 | xs21 = FL1Data[valueT2][valueE21];
|
|---|
| 827 | xs22 = FL1Data[valueT2][valueE22];
|
|---|
| 828 |
|
|---|
| 829 | }
|
|---|
| 830 |
|
|---|
| 831 | G4double xsProduct = xs11 * xs12 * xs21 * xs22;
|
|---|
| 832 |
|
|---|
| 833 | if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
|
|---|
| 834 |
|
|---|
| 835 | if (xsProduct != 0.)
|
|---|
| 836 | {
|
|---|
| 837 | sigma = QuadInterpolator( valueE11, valueE12,
|
|---|
| 838 | valueE21, valueE22,
|
|---|
| 839 | xs11, xs12,
|
|---|
| 840 | xs21, xs22,
|
|---|
| 841 | valueT1, valueT2,
|
|---|
| 842 | k, theta );
|
|---|
| 843 | }
|
|---|
| 844 |
|
|---|
| 845 | return sigma;
|
|---|
| 846 | }
|
|---|
| 847 |
|
|---|
| 848 |
|
|---|
| 849 |
|
|---|
| 850 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 851 |
|
|---|
| 852 |
|
|---|
| 853 | G4double G4ecpssrLiCrossSection::FunctionFL2(G4double k, G4double theta)
|
|---|
| 854 | {
|
|---|
| 855 |
|
|---|
| 856 | G4double sigma = 0.;
|
|---|
| 857 | G4double valueT1 = 0;
|
|---|
| 858 | G4double valueT2 = 0;
|
|---|
| 859 | G4double valueE21 = 0;
|
|---|
| 860 | G4double valueE22 = 0;
|
|---|
| 861 | G4double valueE12 = 0;
|
|---|
| 862 | G4double valueE11 = 0;
|
|---|
| 863 | G4double xs11 = 0;
|
|---|
| 864 | G4double xs12 = 0;
|
|---|
| 865 | G4double xs21 = 0;
|
|---|
| 866 | G4double xs22 = 0;
|
|---|
| 867 |
|
|---|
| 868 | // PROTECTION TO ALLOW INTERPOLATION AT MINIMUM AND MAXIMUM EtaK/Theta2 values
|
|---|
| 869 | // (in particular for FK computation at 95 for high velocity formula)
|
|---|
| 870 |
|
|---|
| 871 | if (
|
|---|
| 872 | theta==9.5e-2 ||
|
|---|
| 873 | theta==9.5e-1 ||
|
|---|
| 874 | theta==9.5e+00 ||
|
|---|
| 875 | theta==9.5e+01
|
|---|
| 876 | ) theta=theta-1e-12;
|
|---|
| 877 |
|
|---|
| 878 | if (
|
|---|
| 879 | theta==1.e-2 ||
|
|---|
| 880 | theta==1.e-1 ||
|
|---|
| 881 | theta==1.e+00 ||
|
|---|
| 882 | theta==1.e+01
|
|---|
| 883 | ) theta=theta+1e-12;
|
|---|
| 884 |
|
|---|
| 885 | // END PROTECTION
|
|---|
| 886 |
|
|---|
| 887 | {
|
|---|
| 888 | std::vector<double>::iterator t2 = std::upper_bound(dummyVec.begin(),dummyVec.end(), k);
|
|---|
| 889 | std::vector<double>::iterator t1 = t2-1;
|
|---|
| 890 |
|
|---|
| 891 | std::vector<double>::iterator e12 = std::upper_bound(aVecMap[(*t1)].begin(),aVecMap[(*t1)].end(), theta);
|
|---|
| 892 | std::vector<double>::iterator e11 = e12-1;
|
|---|
| 893 |
|
|---|
| 894 | std::vector<double>::iterator e22 = std::upper_bound(aVecMap[(*t2)].begin(),aVecMap[(*t2)].end(), theta);
|
|---|
| 895 | std::vector<double>::iterator e21 = e22-1;
|
|---|
| 896 |
|
|---|
| 897 | valueT1 =*t1;
|
|---|
| 898 | valueT2 =*t2;
|
|---|
| 899 | valueE21 =*e21;
|
|---|
| 900 | valueE22 =*e22;
|
|---|
| 901 | valueE12 =*e12;
|
|---|
| 902 | valueE11 =*e11;
|
|---|
| 903 |
|
|---|
| 904 | xs11 = FL2Data[valueT1][valueE11];
|
|---|
| 905 | xs12 = FL2Data[valueT1][valueE12];
|
|---|
| 906 | xs21 = FL2Data[valueT2][valueE21];
|
|---|
| 907 | xs22 = FL2Data[valueT2][valueE22];
|
|---|
| 908 |
|
|---|
| 909 |
|
|---|
| 910 | }
|
|---|
| 911 |
|
|---|
| 912 | G4double xsProduct = xs11 * xs12 * xs21 * xs22;
|
|---|
| 913 |
|
|---|
| 914 | if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
|
|---|
| 915 |
|
|---|
| 916 | if (xsProduct != 0.)
|
|---|
| 917 | {
|
|---|
| 918 | sigma = QuadInterpolator( valueE11, valueE12,
|
|---|
| 919 | valueE21, valueE22,
|
|---|
| 920 | xs11, xs12,
|
|---|
| 921 | xs21, xs22,
|
|---|
| 922 | valueT1, valueT2,
|
|---|
| 923 | k, theta );
|
|---|
| 924 | }
|
|---|
| 925 |
|
|---|
| 926 | return sigma;
|
|---|
| 927 | }
|
|---|
| 928 |
|
|---|
| 929 |
|
|---|
| 930 |
|
|---|
| 931 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 932 |
|
|---|
| 933 | G4double G4ecpssrLiCrossSection::LinLogInterpolate(G4double e1,
|
|---|
| 934 | G4double e2,
|
|---|
| 935 | G4double e,
|
|---|
| 936 | G4double xs1,
|
|---|
| 937 | G4double xs2)
|
|---|
| 938 | {
|
|---|
| 939 | G4double d1 = std::log(xs1);
|
|---|
| 940 | G4double d2 = std::log(xs2);
|
|---|
| 941 | G4double value = std::exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
|
|---|
| 942 | return value;
|
|---|
| 943 | }
|
|---|
| 944 |
|
|---|
| 945 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 946 |
|
|---|
| 947 | G4double G4ecpssrLiCrossSection::LogLogInterpolate(G4double e1,
|
|---|
| 948 | G4double e2,
|
|---|
| 949 | G4double e,
|
|---|
| 950 | G4double xs1,
|
|---|
| 951 | G4double xs2)
|
|---|
| 952 | {
|
|---|
| 953 | G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
|
|---|
| 954 | G4double b = std::log10(xs2) - a*std::log10(e2);
|
|---|
| 955 | G4double sigma = a*std::log10(e) + b;
|
|---|
| 956 | G4double value = (std::pow(10.,sigma));
|
|---|
| 957 | return value;
|
|---|
| 958 | }
|
|---|
| 959 |
|
|---|
| 960 | //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
|
|---|
| 961 |
|
|---|
| 962 | G4double G4ecpssrLiCrossSection::QuadInterpolator(G4double e11, G4double e12,
|
|---|
| 963 | G4double e21, G4double e22,
|
|---|
| 964 | G4double xs11, G4double xs12,
|
|---|
| 965 | G4double xs21, G4double xs22,
|
|---|
| 966 | G4double t1, G4double t2,
|
|---|
| 967 | G4double t, G4double e)
|
|---|
| 968 | {
|
|---|
| 969 | // Log-Log
|
|---|
| 970 | /*
|
|---|
| 971 | G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
|
|---|
| 972 | G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
|
|---|
| 973 | G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
|
|---|
| 974 | */
|
|---|
| 975 |
|
|---|
| 976 | // Lin-Log
|
|---|
| 977 | G4double interpolatedvalue1 = LinLogInterpolate(e11, e12, e, xs11, xs12);
|
|---|
| 978 | G4double interpolatedvalue2 = LinLogInterpolate(e21, e22, e, xs21, xs22);
|
|---|
| 979 | G4double value = LinLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
|
|---|
| 980 | return value;
|
|---|
| 981 | }
|
|---|
| 982 |
|
|---|