// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // #include "G4AtomicTransitionManager.hh" #include "G4AtomicDeexcitation.hh" #include "globals.hh" #include "G4ios.hh" #include #include "G4DynamicParticle.hh" #include "AIDA/AIDA.h" #include "Randomize.hh" using namespace CLHEP; int main(int argc, char* argv[]){ time_t seconds = time(NULL); G4int seed = seconds; // choose the Random engine CLHEP::HepRandom::setTheEngine(new CLHEP::RanecuEngine); CLHEP::HepRandom::setTheSeed(seed); G4int Z; G4int a; G4int b; G4int startId; G4int vacancyId; G4int numberOfRun; G4int batch=0; G4int element; if (argv[1]) {batch = atoi(argv[1]);} G4String fileName; if (argv[3]) {element = atoi(argv[3]);} if (argv[4]) {fileName = argv[4];} else {fileName = "transitions.xml";} AIDA::ITree* tree; AIDA::IAnalysisFactory* analysisFactory; AIDA::ITupleFactory* tupleFactory; AIDA::ITuple* tupleFluo; if (batch != 1) { G4cout << "Enter Z " << G4endl; G4cin >> a; G4cout << "Enter the id of the vacancy" << G4endl; G4cin >> startId; G4cout<<"Enter the number of runs "<> numberOfRun; } else { a = 0; startId = -1; numberOfRun = atoi(argv[2]); } analysisFactory = AIDA_createAnalysisFactory(); AIDA::ITreeFactory* treeFactory = analysisFactory->createTreeFactory(); tree = treeFactory->create(fileName,"xml",false,true); tupleFactory = analysisFactory->createTupleFactory(*tree); // Book tuple column names std::vector columnNames; // Book tuple column types std::vector columnTypes; //if Z=0 a number of runs numberOfRun is generated for all the elements if (a==0) { if (element == 0) { a = 6; b = 98; } else { a = element; b = a;} columnNames.push_back("AtomicNumber"); columnNames.push_back("Particle"); columnNames.push_back("Energies"); columnTypes.push_back("int"); columnTypes.push_back("int"); columnTypes.push_back("double"); tupleFluo = tupleFactory->create("10", "Total Tuple", columnNames, columnTypes, ""); assert(tupleFluo); } else { b = a;} G4AtomicTransitionManager* transitionManager = G4AtomicTransitionManager::Instance(); G4AtomicDeexcitation* deexcitation = new G4AtomicDeexcitation; std::map shellNumberTable; deexcitation->ActivateAugerElectronProduction(true); for (Z = a; Z<=b; Z++) { G4cout << "******** Z = "<< Z << "*********" << G4endl; G4int numberOfPossibleShell = transitionManager->NumberOfShells(Z); shellNumberTable[Z] = numberOfPossibleShell; G4int min = 0; G4int max = 0; std::vector* vectorOfParticles; for(G4int i = 0; i GenerateParticles(Z,vacancyId); G4cout<< vectorOfParticles->size()<<" particles in the vector "<size();k++) { G4DynamicParticle* newParticle = (*vectorOfParticles)[k]; if ( newParticle->GetDefinition()->GetParticleName() == "e-") { G4DynamicParticle* newElectron = (*vectorOfParticles)[k]; G4ThreeVector augerDirection =newElectron ->GetMomentum(); G4double augerEnergy =newElectron ->GetKineticEnergy(); if (startId==-1){ tupleFluo->fill(0,Z); tupleFluo->fill(1,0); tupleFluo->fill(2,augerEnergy); tupleFluo->addRow(); } else{ G4cout <<" An auger has been generated"<GetMomentum(); G4double photonEnergy =newParticle ->GetKineticEnergy(); if (startId==-1){ G4cout << "pippo2" << G4endl; tupleFluo->fill(0,Z); tupleFluo->fill(1,1); tupleFluo->fill(2,photonEnergy); tupleFluo->addRow(); } else{ G4cout<<" vectorOfParticles ["<commit(); // Write histos in file. tree->close(); } delete vectorOfParticles; } } delete deexcitation; G4cout<<"END OF THE MAIN PROGRAM"<