source: trunk/source/processes/electromagnetic/lowenergy/test/G4LowEnergyGammaConversionTest.cc @ 1350

Last change on this file since 1350 was 1350, checked in by garnier, 13 years ago

update to last version 4.9.4

File size: 19.7 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4LowEnergyGammaConversionTest.cc,v 1.8 2006/06/29 19:44:03 gunter Exp $
28// GEANT4 tag $Name: geant4-09-04-ref-00 $
29//
30// -------------------------------------------------------------------
31//      GEANT 4 class file --- Copyright CERN 1998
32//      CERN Geneva Switzerland
33//
34//
35//      File name:     G4LowEnergyGammaConversionTest.cc
36//
37//      Author:        Francesco Longo
38//
39//      Creation date: 04 january 2001
40//
41//      Modifications:
42//
43// -------------------------------------------------------------------
44
45#include "globals.hh"
46#include "G4ios.hh"
47#include <fstream>
48#include <iomanip>
49
50#include "G4ParticleDefinition.hh"
51#include "G4ParticleTypes.hh"
52#include "G4ParticleTable.hh"
53#include "G4Material.hh"
54#include "G4MaterialTable.hh"
55#include "G4VDiscreteProcess.hh"
56#include "G4VProcess.hh"
57#include "G4ProcessManager.hh"
58
59#include "G4LowEnergyGammaConversion.hh"
60#include "G4GammaConversion.hh"
61
62#include "G4EnergyLossTables.hh"
63#include "G4VParticleChange.hh"
64#include "G4ParticleChange.hh"
65#include "G4DynamicParticle.hh"
66
67#include "G4LowEnergyBremsstrahlung.hh"
68#include "G4LowEnergyIonisation.hh"
69#include "G4eIonisation.hh"
70#include "G4MultipleScattering.hh"
71#include "G4eIonisation.hh"
72#include "G4eBremsstrahlung.hh"
73#include "G4eplusAnnihilation.hh"
74
75//#include "G4ComptonScattering.hh"
76//#include "G4PhotoElectricEffect.hh"
77
78#include "G4Electron.hh"
79#include "G4Positron.hh"
80#include "G4Gamma.hh"
81
82#include "G4GRSVolume.hh"
83#include "G4Box.hh"
84#include "G4PVPlacement.hh"
85#include "G4Step.hh"
86
87#include "G4UnitsTable.hh"
88
89#include "CLHEP/Hist/TupleManager.h"
90#include "CLHEP/Hist/HBookFile.h"
91#include "CLHEP/Hist/Histogram.h"
92#include "CLHEP/Hist/Tuple.h"
93
94
95HepTupleManager* hbookManager;
96
97G4int main()
98{
99
100  // Setup
101
102  G4int nIterations = 100000;
103  G4int materialId = 3;
104
105  G4cout.setf( ios::scientific, ios::floatfield );
106
107  // -------------------------------------------------------------------
108
109  // ---- HBOOK initialization
110
111
112  hbookManager = new HBookFile("gammatest.hbook", 58);
113  assert (hbookManager != 0);
114 
115  // ---- Book a histogram and ntuples
116  G4cout<<"Hbook file name: "<<((HBookFile*) hbookManager)->filename()<<endl;
117 
118  // ---- primary ntuple ------
119  HepTuple* ntuple1 = hbookManager->ntuple("Primary Ntuple");
120  assert (ntuple1 != 0);
121 
122  // ---- secondary ntuple ------
123  HepTuple* ntuple2 = hbookManager->ntuple("Secondary Ntuple");
124  assert (ntuple2 != 0);
125
126  // ---- table ntuple ------
127  HepTuple* ntuple3 = hbookManager->ntuple("Mean Free Path Ntuple");
128  assert (ntuple3 != 0);
129 
130  // ---- secondaries histos ----
131  HepHistogram* hEKin;
132  hEKin = hbookManager->histogram("Kinetic Energy", 100,0.,200.);
133  assert (hEKin != 0); 
134 
135  HepHistogram* hP;
136  hP = hbookManager->histogram("Momentum", 100,0.,1000.);
137  assert (hP != 0); 
138 
139  HepHistogram* hNSec;
140  hNSec = hbookManager->histogram("Number of secondaries", 40,0.,40.);
141  assert (hNSec != 0); 
142 
143  HepHistogram* hDebug;
144  hDebug = hbookManager->histogram("Debug", 100,0.,200.);
145  assert (hDebug != 0); 
146 
147
148  //--------- Materials definition ---------
149
150  G4Material* Si  = new G4Material("Silicon",   14., 28.055*g/mole, 2.33*g/cm3);
151  G4Material* Fe  = new G4Material("Iron",      26., 55.85*g/mole, 7.87*g/cm3);
152  G4Material* Cu  = new G4Material("Copper",    29., 63.55*g/mole, 8.96*g/cm3);
153  G4Material*  W  = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
154  G4Material* Pb  = new G4Material("Lead",      82., 207.19*g/mole, 11.35*g/cm3);
155  G4Material*  U  = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
156
157  G4Element*   H  = new G4Element ("Hydrogen", "H", 1. ,  1.01*g/mole);
158  G4Element*   O  = new G4Element ("Oxygen"  , "O", 8. , 16.00*g/mole);
159  G4Element*   C  = new G4Element ("Carbon"  , "C", 6. , 12.00*g/mole);
160  G4Element*  Cs  = new G4Element ("Cesium"  , "Cs", 55. , 132.905*g/mole);
161  G4Element*   I  = new G4Element ("Iodide"  , "I", 53. , 126.9044*g/mole);
162
163  G4Material*  maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
164
165  G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
166  water->AddElement(H,2);
167  water->AddElement(O,1);
168
169  G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
170  ethane->AddElement(H,6);
171  ethane->AddElement(C,2);
172 
173  G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
174  csi->AddElement(Cs,1);
175  csi->AddElement(I,1);
176
177
178  // Interactive set-up
179
180  G4cout << "How many interactions? " << G4endl;
181  G4cin >> nIterations;
182
183  if (nIterations <= 0) G4Exception("Wrong input");
184
185  G4double initEnergy = 1*MeV; 
186  G4double initX = 0.; 
187  G4double initY = 0.; 
188  G4double initZ = 1.;
189 
190  G4cout << "Enter the initial particle energy E (MeV)" << G4endl; 
191  G4cin >> initEnergy ;
192 
193  initEnergy = initEnergy * MeV;
194 
195  if (initEnergy  <= 0.) G4Exception("Wrong input");
196
197  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
198
199  G4int nMaterials = G4Material::GetNumberOfMaterials();
200
201  G4cout << "Available materials are: " << G4endl;
202  for (G4int mat = 0; mat < nMaterials; mat++)
203    {
204      G4cout << mat << ") "
205             << (*theMaterialTable)[mat]->GetName()
206             << G4endl;
207    }
208 
209  G4cout << "Which material? " << G4endl;
210  G4cin >> materialId;
211 
212  G4Material* material = (*theMaterialTable)[materialId] ;
213
214  G4cout << "The selected material is: "
215         << material->GetName()
216         << G4endl;
217 
218  G4double dimX = 1*mm;
219  G4double dimY = 1*mm;
220  G4double dimZ = 1*mm;
221 
222  // Geometry
223 
224  G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
225 
226  G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
227                                                      (*theMaterialTable)[materialId],
228                                                      "LFrame", 0, 0, 0);
229  logicalFrame->SetMaterial(material); 
230 
231  G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
232                                                   "PFrame",logicalFrame,0,false,0);
233 
234  // Particle definitions
235 
236  G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
237  G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
238  G4ParticleDefinition* positron = G4Positron::PositronDefinition();
239 
240  gamma->SetCuts(1*micrometer);
241  electron->SetCuts(1*micrometer);
242  positron->SetCuts(1*micrometer);
243
244  G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
245  G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
246  G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
247
248  G4cout<<"the cut in energy for gamma in: "<<
249    (*theMaterialTable)[materialId]->GetName()
250        <<" is: "<<G4Gamma::GetCutsInEnergy()[materialId]<<G4endl;
251  G4cout<<"the cut in energy for e- in: "<<
252    (*theMaterialTable)[materialId]->GetName()
253        <<" is: "<<G4Electron::GetCutsInEnergy()[materialId]<<G4endl;
254 
255  // Processes
256 
257 
258  G4int processType;
259  G4cout << "LowEnergy [1] or Standard [2] Gamma Conversion?" << G4endl;
260  G4cin >> processType;
261  if ( !(processType == 1 || processType == 2))
262    {
263      G4Exception("Wrong input");
264    }
265
266  G4VDiscreteProcess* gammaProcess;
267
268  if (processType == 1)
269    {
270      gammaProcess = new G4LowEnergyGammaConversion();
271    }
272  else
273    {
274      gammaProcess = new G4GammaConversion();
275    }
276 
277 
278  G4VProcess* theeminusMultipleScattering = new G4MultipleScattering();
279  G4VProcess* theeminusIonisation         = new G4eIonisation();
280  G4VProcess* theeminusBremsstrahlung     = new G4eBremsstrahlung();
281  G4VProcess* theeplusMultipleScattering  = new G4MultipleScattering();
282  G4VProcess* theeplusIonisation          = new G4eIonisation();
283  G4VProcess* theeplusBremsstrahlung      = new G4eBremsstrahlung();
284  G4VProcess* theeplusAnnihilation        = new G4eplusAnnihilation();
285
286  //----------------
287  // process manager 
288  //----------------
289
290  // gamma
291 
292  G4ProcessManager* gProcessManager = new G4ProcessManager(gamma);
293  gamma->SetProcessManager(gProcessManager);
294  gProcessManager->AddDiscreteProcess(gammaProcess);
295  G4ForceCondition* condition;
296
297  //electron
298 
299  G4ProcessManager* eProcessManager = new G4ProcessManager(electron);
300  electron->SetProcessManager(eProcessManager);
301  eProcessManager->AddProcess(theeminusMultipleScattering);
302  eProcessManager->AddProcess(theeminusIonisation);
303  eProcessManager->AddProcess(theeminusBremsstrahlung);
304 
305  //positron
306 
307  G4ProcessManager* pProcessManager = new G4ProcessManager(positron);
308  positron->SetProcessManager(pProcessManager);
309  pProcessManager->AddProcess(theeplusMultipleScattering);
310  pProcessManager->AddProcess(theeplusIonisation);
311  pProcessManager->AddProcess(theeplusBremsstrahlung);
312  pProcessManager->AddProcess(theeplusAnnihilation);
313 
314  //--------------
315  // set ordering   
316  //--------------
317
318
319  eProcessManager->
320    SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
321  eProcessManager->
322    SetProcessOrdering(theeminusIonisation,         idxAlongStep,2);
323     
324  eProcessManager->
325    SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
326  eProcessManager->
327    SetProcessOrdering(theeminusIonisation,         idxPostStep,2);
328  eProcessManager->
329    SetProcessOrdering(theeminusBremsstrahlung,     idxPostStep,3);
330
331
332
333  pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
334  pProcessManager->
335    SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
336  pProcessManager->
337    SetProcessOrdering(theeplusIonisation,         idxAlongStep,2);
338
339  pProcessManager->
340    SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
341  pProcessManager->
342    SetProcessOrdering(theeplusIonisation,         idxPostStep,2);
343  pProcessManager->
344    SetProcessOrdering(theeplusBremsstrahlung,     idxPostStep,3);
345  pProcessManager->
346    SetProcessOrdering(theeplusAnnihilation,       idxPostStep,4);
347 
348  // G4LowEnergyIonisation IonisationProcess;
349  // eProcessManager->AddProcess(&IonisationProcess);
350  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1);
351  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep, 1);
352 
353  // G4LowEnergyBremsstrahlung BremstrahlungProcess;
354  // eProcessManager->AddProcess(&BremstrahlungProcess);
355  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1);
356  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep, 1);
357 
358  // G4eIonisation IonisationPlusProcess;
359  // pPositronProcessManager->AddProcess(&IonisationPlusProcess);
360  // pProcessManager->
361  //        SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1);
362  // pProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1);
363
364
365
366  // Create a DynamicParticle 
367 
368  G4double eEnergy = initEnergy*MeV;
369  G4ParticleMomentum eDirection(initX,initY,initZ);
370  G4DynamicParticle dynamicGamma(G4Gamma::Gamma(),eDirection,eEnergy);
371
372  dynamicGamma.DumpInfo(0);
373 
374  // Track
375
376  G4ThreeVector aPosition(0.,0.,0.);
377  G4double aTime = 0. ;
378 
379  G4Track* gTrack = new G4Track(&dynamicGamma,aTime,aPosition);
380
381  G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);   
382  gTrack->SetTouchable(touche);
383
384
385  // Step
386
387  G4Step* step = new G4Step(); 
388  step->SetTrack(gTrack);
389
390  G4StepPoint* aPoint = new G4StepPoint();
391  aPoint->SetPosition(aPosition);
392  aPoint->SetMaterial(material);
393  G4double safety = 10000.*cm;
394  aPoint->SetSafety(safety);
395  step->SetPreStepPoint(aPoint);
396 
397  // Check applicability
398 
399  if (! (gammaProcess->IsApplicable(*gamma)))
400    {
401      G4Exception("Not Applicable");
402    }
403  else 
404    {
405      G4cout<< "applicability OK" << endl;
406    }
407 
408  // Initialize the physics tables (in which material?)
409
410  gammaProcess->BuildPhysicsTable(*gamma);
411
412  theeminusMultipleScattering->BuildPhysicsTable(*electron);
413  theeminusIonisation->BuildPhysicsTable(*electron);       
414  theeminusBremsstrahlung->BuildPhysicsTable(*electron);
415  theeplusMultipleScattering->BuildPhysicsTable(*positron);
416  theeplusIonisation->BuildPhysicsTable(*positron);
417  theeplusBremsstrahlung->BuildPhysicsTable(*positron);     
418  theeplusAnnihilation->BuildPhysicsTable(*positron) ;
419
420  G4cout<< "table OK" << endl;
421 
422  // Test GetMeanFreePath()
423 
424  G4Material* apttoMaterial ;
425  G4String MaterialName ;
426 
427  G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
428  const G4int pntNum = 300;
429  G4double Tkin[pntNum+1];
430  G4double meanFreePath=0. ;
431
432  argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
433 
434  for(G4int d = 0; d < pntNum+1; d++)
435    { 
436      Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
437    }
438 
439  G4double sti = 1.*mm;
440  step->SetStepLength(sti);
441 
442  //  for ( G4int J = 0 ; J < nMaterials ; J++ )
443  //  {
444  apttoMaterial = (*theMaterialTable)[materialId] ;
445  MaterialName  = apttoMaterial->GetName() ;
446  logicalFrame->SetMaterial(apttoMaterial); 
447 
448  gTrack->SetStep(step);
449
450  G4LowEnergyGammaConversion* gammaLowEProcess =
451    (G4LowEnergyGammaConversion*) gammaProcess;
452  G4GammaConversion* gammaStdProcess =
453    (G4GammaConversion*) gammaProcess;
454 
455 
456  for (G4int i=0 ; i<pntNum; i++)
457    {
458      dynamicGamma.SetKineticEnergy(Tkin[i]);
459      if (processType == 1)
460        {
461          meanFreePath=gammaLowEProcess
462            ->GetMeanFreePath(*gTrack, sti, condition);
463        }
464      else
465        {
466          meanFreePath=gammaStdProcess
467            ->GetMeanFreePath(*gTrack, sti, condition);
468        }
469
470      ntuple3->column("kinen",Tkin[i]);
471      ntuple3->column("mfp",meanFreePath/cm);
472      ntuple3->dumpData();
473   
474      //      G4cout << meanFreePath/cm << G4endl;
475
476    }
477  G4cout << "Mean Free Path OK" << G4endl;
478 
479  // --------- Test the DoIt
480 
481  G4cout << "DoIt in " << material->GetName() << G4endl;
482
483
484  dynamicGamma.SetKineticEnergy(eEnergy);
485  for (G4int iter=0; iter<nIterations; iter++)
486    {
487     
488      step->SetStepLength(1*micrometer);
489     
490      G4cout  <<  "Iteration = "  <<  iter
491              << "  -  Step Length = " 
492              << step->GetStepLength()/mm << " mm "
493              << G4endl;
494     
495      gTrack->SetStep(step); 
496 
497      //      G4cout  <<  "Iteration = "  <<  iter
498      //              << "  -  Step Length = "
499      //      << step->GetStepLength()/mm << " mm "
500      //      << G4endl;
501     
502      //G4cout << gTrack->GetStep()->GetStepLength()/mm
503      //     << G4endl;
504     
505      G4VParticleChange* dummy;
506      dummy = gammaProcess->PostStepDoIt(*gTrack, *step);
507     
508      G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
509     
510      // Primary physical quantities
511     
512      G4double energyChange = particleChange->GetEnergyChange();
513     
514      G4double dedx = initEnergy - energyChange ;
515      G4double dedxNow = dedx / (step->GetStepLength());
516     
517      G4ThreeVector eChange = 
518        particleChange->CalcMomentum(energyChange,
519                                     (*particleChange->GetMomentumChange()),
520                                     particleChange->GetMassChange());
521     
522      G4double pxChange  = eChange.x();
523      G4double pyChange  = eChange.y();
524      G4double pzChange  = eChange.z();
525      G4double pChange   = 
526        std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
527     
528      G4double xChange = particleChange->GetPositionChange()->x();
529      G4double yChange = particleChange->GetPositionChange()->y();
530      G4double zChange = particleChange->GetPositionChange()->z();
531      G4double thetaChange = particleChange->GetPositionChange()->theta();
532     
533      G4cout << "---- Primary after the step ---- " << G4endl;
534 
535      //      G4cout << "Position (x,y,z) = "
536      //             << xChange << "  "
537      //             << yChange << "   "
538      //             << zChange << "   "
539      //             << G4endl;
540
541      G4cout << "---- Energy: " << energyChange/MeV << " MeV,  " 
542             << "(px,py,pz): ("
543             << pxChange/MeV << ","
544             << pyChange/MeV << "," 
545             << pzChange/MeV << ") MeV"
546             << G4endl;
547     
548      G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
549      //      G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
550     
551      // Secondaries
552
553      ntuple1->column("eprimary", initEnergy);
554      ntuple1->column("energyf", energyChange);
555      ntuple1->column("de", dedx);
556      ntuple1->column("dedx", dedxNow);
557      ntuple1->column("pxch", xChange);
558      ntuple1->column("pych", pyChange);
559      ntuple1->column("pzch", pzChange);
560      ntuple1->column("pch", zChange); 
561      ntuple1->column("thetach", thetaChange); 
562      ntuple1->dumpData(); 
563
564      // Secondaries physical quantities
565     
566      hNSec->accumulate(particleChange->GetNumberOfSecondaries());
567      hDebug->accumulate(particleChange->GetLocalEnergyDeposit());
568     
569      G4cout << " secondaries " << 
570        particleChange->GetNumberOfSecondaries() << G4endl;
571     
572      for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) 
573        {
574          // The following two items should be filled per event, not
575          // per secondary; filled here just for convenience, to avoid
576          // complicated logic to dump ntuple when there are no secondaries
577         
578          G4Track* finalParticle = particleChange->GetSecondary(i) ;
579         
580          G4double e    = finalParticle->GetTotalEnergy();
581          G4double eKin = finalParticle->GetKineticEnergy();
582          G4double px   = (finalParticle->GetMomentum()).x();
583          G4double py   = (finalParticle->GetMomentum()).y();
584          G4double pz   = (finalParticle->GetMomentum()).z();
585          G4double theta   = (finalParticle->GetMomentum()).theta();
586          G4double p   = std::sqrt(px*px+py*py+pz*pz);
587         
588          if (e > initEnergy)
589            {
590              G4cout << "WARNING: eFinal > eInit " << G4endl;
591              //             << e
592              //                     << " > " initEnergy
593             
594            }
595         
596          G4String particleName = 
597            finalParticle->GetDefinition()->GetParticleName();
598          G4cout  << "==== Final " 
599                  <<  particleName  <<  " " 
600                  << "energy: " <<  e/MeV  <<  " MeV,  " 
601                  << "eKin: " <<  eKin/MeV  <<  " MeV, " 
602                  << "(px,py,pz): ("
603                  <<  px/MeV  <<  "," 
604                  <<  py/MeV  <<  ","
605                  <<  pz/MeV  << ") MeV "
606                  <<  G4endl;   
607         
608          hEKin->accumulate(eKin);
609          hP->accumulate(p);
610         
611          G4int partType;
612          if (particleName == "e-") partType = 1;
613          else if (particleName == "e+") partType = 2;
614          else if (particleName == "gamma") partType = 3;
615         
616          // Fill the secondaries ntuple
617
618          ntuple2->column("event",iter);
619          ntuple2->column("eprimary",initEnergy);
620          ntuple2->column("px", px);
621          ntuple2->column("py", py);
622          ntuple2->column("pz", pz);
623          ntuple2->column("p", p);
624          ntuple2->column("e", e);
625          ntuple2->column("theta", theta);
626          ntuple2->column("ekin", eKin);
627          ntuple2->column("type", partType);
628         
629          ntuple2->dumpData(); 
630         
631          delete particleChange->GetSecondary(i);
632        }
633     
634      particleChange->Clear();
635     
636    } 
637 
638 
639  G4cout  << "Iteration number: "  <<  iter << G4endl;
640  hbookManager->write();
641  delete hbookManager;
642 
643  delete step;
644
645
646  cout << "END OF THE MAIN PROGRAM" << G4endl;
647}
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
Note: See TracBrowser for help on using the repository browser.