source: trunk/source/processes/electromagnetic/lowenergy/test/G4LowEnergyPolarizedComptonTest.cc @ 1350

Last change on this file since 1350 was 1350, checked in by garnier, 13 years ago

update to last version 4.9.4

File size: 22.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4LowEnergyPolarizedComptonTest.cc,v 1.8 2006/06/29 19:44:05 gunter Exp $
28// GEANT4 tag $Name: geant4-09-04-ref-00 $
29//
30// -------------------------------------------------------------------
31//      GEANT 4 class file --- Copyright CERN 1998
32//      CERN Geneva Switzerland
33//
34//
35//      File name:     G4ComptonScatteringTest.cc
36//
37//      Author:        Francesco Longo & Gerardo Depaola
38//
39//      Creation date: 23 january 2001
40//
41//      Modifications:
42//
43// -------------------------------------------------------------------
44
45#include "globals.hh"
46#include "G4ios.hh"
47#include <fstream>
48#include <iomanip>
49
50#include "G4ParticleDefinition.hh"
51#include "G4ParticleTypes.hh"
52#include "G4ParticleTable.hh"
53#include "G4Material.hh"
54#include "G4MaterialTable.hh"
55#include "G4VDiscreteProcess.hh"
56#include "G4VProcess.hh"
57#include "G4ProcessManager.hh"
58
59#include "G4ComptonScattering.hh"
60#include "G4PolarizedComptonScattering.hh"
61#include "G4LowEnergyCompton.hh"
62#include "G4LowEnergyPolarizedCompton.hh"
63
64#include "G4EnergyLossTables.hh"
65#include "G4VParticleChange.hh"
66#include "G4ParticleChange.hh"
67#include "G4DynamicParticle.hh"
68
69#include "G4LowEnergyBremsstrahlung.hh"
70#include "G4LowEnergyIonisation.hh"
71#include "G4eIonisation.hh"
72#include "G4MultipleScattering.hh"
73#include "G4eIonisation.hh"
74#include "G4eBremsstrahlung.hh"
75#include "G4eplusAnnihilation.hh"
76
77#include "G4Electron.hh"
78#include "G4Positron.hh"
79#include "G4Gamma.hh"
80
81#include "G4GRSVolume.hh"
82#include "G4Box.hh"
83#include "G4PVPlacement.hh"
84#include "G4Step.hh"
85
86#include "G4UnitsTable.hh"
87
88#include "CLHEP/Hist/TupleManager.h"
89#include "CLHEP/Hist/HBookFile.h"
90#include "CLHEP/Hist/Histogram.h"
91#include "CLHEP/Hist/Tuple.h"
92
93
94HepTupleManager* hbookManager;
95
96G4int main()
97{
98
99  // Setup
100
101  G4int nIterations = 100000;
102  G4int materialId = 3;
103
104  //  G4cout.setf( ios::scientific, ios::floatfield );
105
106  // -------------------------------------------------------------------
107
108  // ---- HBOOK initialization
109
110
111  hbookManager = new HBookFile("comptontest.hbook", 58);
112  assert (hbookManager != 0);
113
114  // ---- Book a histogram and ntuples
115
116  G4cout<<"Hbook file name: "<<((HBookFile*) hbookManager)->filename()<<G4endl;
117 
118
119  G4double initEnergy = 1*MeV; 
120  G4double initX = 0.; 
121  G4double initY = 0.; 
122  G4double initZ = 1.;
123 
124  G4cout << "Enter the initial particle energy E (keV)" << G4endl; 
125  G4cin >> initEnergy ;
126  initEnergy = initEnergy * keV;
127  G4double limit = initEnergy/keV;
128
129  G4cout << limit << G4endl;
130 
131  if (initEnergy  <= 0.) G4Exception("Wrong input");
132 
133  // ---- primary ntuple ------
134  HepTuple* ntuple1 = hbookManager->ntuple("Primary Ntuple");
135  assert (ntuple1 != 0);
136 
137  // ---- secondary ntuple ------
138  HepTuple* ntuple2 = hbookManager->ntuple("Secondary Ntuple");
139  assert (ntuple2 != 0);
140
141  /* 
142      // ---- table ntuple ------
143      HepTuple* ntuple3 = hbookManager->ntuple("Mean Free Path Ntuple");
144      assert (ntuple3 != 0);
145  */
146 
147  // ---- secondaries histos ----
148
149  HepHistogram* heETot;
150  heETot = hbookManager->histogram("Electron Total Energy", 100,0.,limit);
151  assert (heETot != 0); 
152 
153  HepHistogram* heP;
154  heP = hbookManager->histogram("Electron Momentum", 100,0.,limit);
155  assert (heP != 0); 
156
157  HepHistogram* hgETot;
158  hgETot = hbookManager->histogram("Gamma Total Energy", 100,0.,limit);
159  assert (hgETot != 0); 
160 
161  HepHistogram* hgP;
162  hgP = hbookManager->histogram("Gamma Momentum", 100,0.,limit);
163  assert (hgP != 0); 
164
165  HepHistogram* hgTheta;
166  hgTheta = hbookManager->histogram("Theta Scattered Gamma ", 100,0.,4.);
167  assert (hgTheta != 0); 
168
169  HepHistogram* hgPhi;
170  hgPhi = hbookManager->histogram("Phi Scattered Gamma ", 100,-4.,4.);
171  assert (hgPhi != 0); 
172
173  HepHistogram* hSumE;
174  hSumE = hbookManager->histogram("Total Energy", 100,0.,2*limit);
175  assert (hSumE != 0); 
176
177  HepHistogram* hgRapp;
178  hgRapp = hbookManager->histogram("Energy Theta Relation", 100,0.,2.);
179  assert (hgRapp != 0); 
180
181  HepHistogram* hNSec;
182  hNSec = hbookManager->histogram("Number of secondaries", 100,0.,10.);
183  assert (hNSec != 0); 
184
185  HepHistogram* hDebug;
186  hDebug = hbookManager->histogram("Debug", 100,0.,limit);
187  assert (hDebug != 0); 
188 
189
190  //--------- Materials definition ---------
191
192  G4Material* Si  = new G4Material("Silicon",   14., 28.055*g/mole, 2.33*g/cm3);
193  G4Material* Fe  = new G4Material("Iron",      26., 55.85*g/mole, 7.87*g/cm3);
194  G4Material* Cu  = new G4Material("Copper",    29., 63.55*g/mole, 8.96*g/cm3);
195  G4Material*  W  = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
196  G4Material* Pb  = new G4Material("Lead",      82., 207.19*g/mole, 11.35*g/cm3);
197  G4Element*   H  = new G4Element ("Hydrogen", "H", 1. ,  1.01*g/mole);
198  G4Element*   O  = new G4Element ("Oxygen"  , "O", 8. , 16.00*g/mole);
199  G4Element*   C  = new G4Element ("Carbon"  , "C", 6. , 12.00*g/mole);
200  G4Element*  Cs  = new G4Element ("Cesium"  , "Cs", 55. , 132.905*g/mole);
201  G4Element*   I  = new G4Element ("Iodide"  , "I", 53. , 126.9044*g/mole);
202  G4Material*  maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
203
204  G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
205  csi->AddElement(Cs,1);
206  csi->AddElement(I,1);
207
208
209  // Interactive set-up
210
211  G4cout << "How many interactions? " << G4endl;
212  G4cin >> nIterations;
213
214  if (nIterations <= 0) G4Exception("Wrong input");
215
216 
217
218  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
219
220  G4int nMaterials = G4Material::GetNumberOfMaterials();
221
222  G4cout << "Available materials are: " << G4endl;
223  for (G4int mat = 0; mat < nMaterials; mat++)
224    {
225      G4cout << mat << ") "
226             << (*theMaterialTable)[mat]->GetName()
227             << G4endl;
228    }
229 
230  G4cout << "Which material? " << G4endl;
231  G4cin >> materialId;
232 
233  G4Material* material = (*theMaterialTable)[materialId] ;
234
235  G4cout << "The selected material is: "
236         << material->GetName()
237         << G4endl;
238 
239  G4double dimX = 1*mm;
240  G4double dimY = 1*mm;
241  G4double dimZ = 1*mm;
242 
243  // Geometry
244 
245  G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
246 
247  G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
248                                                      (*theMaterialTable)[materialId],
249                                                      "LFrame", 0, 0, 0);
250  logicalFrame->SetMaterial(material); 
251 
252  G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
253                                                   "PFrame",logicalFrame,0,false,0);
254 
255  // Particle definitions
256 
257  G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
258  G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
259  G4ParticleDefinition* positron = G4Positron::PositronDefinition();
260 
261  gamma->SetCuts(0.1*micrometer);
262  electron->SetCuts(0.1*micrometer);
263  positron->SetCuts(0.1*micrometer);
264
265  G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
266  G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
267  G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
268
269  G4cout<<"the cut in energy for gamma in: "<<
270    (*theMaterialTable)[materialId]->GetName()
271        <<" is: "<<(G4Gamma::GetCutsInEnergy()[materialId])/keV
272        <<" keV" <<G4endl;
273  G4cout<<"the cut in energy for e- in: "<<
274    (*theMaterialTable)[materialId]->GetName()
275        <<" is: "<<(G4Electron::GetCutsInEnergy()[materialId])/keV
276        <<" keV" <<G4endl;
277 
278  // Processes
279 
280
281  G4int processType;
282  G4cout << "LowEnergy [1] or Standard [2] Compton or Standard PolarizedCompton[3] or LowEnergyPolarizedCompton [4]" << G4endl;
283  G4cin >> processType;
284  if ( !(processType == 1 || processType == 2 
285         || processType == 3  || processType == 4))
286    {
287      G4Exception("Wrong input");
288    }
289 
290  G4VDiscreteProcess* gammaProcess;
291 
292
293  if (processType == 1)
294    {
295      gammaProcess = new G4LowEnergyCompton();
296    }
297  else if (processType == 2)
298    {
299      gammaProcess = new G4ComptonScattering();
300    }
301  else if (processType == 3)
302    {
303      gammaProcess = new G4PolarizedComptonScattering();
304    }
305  else if (processType == 4)
306    {
307      gammaProcess = new G4LowEnergyPolarizedCompton();
308      }
309     
310  G4VProcess* theeminusMultipleScattering = new G4MultipleScattering();
311  G4VProcess* theeminusIonisation         = new G4eIonisation();
312  G4VProcess* theeminusBremsstrahlung     = new G4eBremsstrahlung();
313  G4VProcess* theeplusMultipleScattering  = new G4MultipleScattering();
314  G4VProcess* theeplusIonisation          = new G4eIonisation();
315  G4VProcess* theeplusBremsstrahlung      = new G4eBremsstrahlung();
316  G4VProcess* theeplusAnnihilation        = new G4eplusAnnihilation();
317   
318  //----------------
319  // process manager 
320  //----------------
321
322  // gamma
323 
324  G4ProcessManager* gProcessManager = new G4ProcessManager(gamma);
325  gamma->SetProcessManager(gProcessManager);
326  gProcessManager->AddDiscreteProcess(gammaProcess);
327  G4ForceCondition* condition;
328
329  //electron
330 
331  G4ProcessManager* eProcessManager = new G4ProcessManager(electron);
332  electron->SetProcessManager(eProcessManager);
333  eProcessManager->AddProcess(theeminusMultipleScattering);
334  eProcessManager->AddProcess(theeminusIonisation);
335  eProcessManager->AddProcess(theeminusBremsstrahlung);
336 
337  //positron
338 
339  G4ProcessManager* pProcessManager = new G4ProcessManager(positron);
340  positron->SetProcessManager(pProcessManager);
341  pProcessManager->AddProcess(theeplusMultipleScattering);
342  pProcessManager->AddProcess(theeplusIonisation);
343  pProcessManager->AddProcess(theeplusBremsstrahlung);
344  pProcessManager->AddProcess(theeplusAnnihilation);
345 
346  //--------------
347  // set ordering   
348  //--------------
349
350
351  eProcessManager->
352    SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
353  eProcessManager->
354    SetProcessOrdering(theeminusIonisation,         idxAlongStep,2);
355     
356  eProcessManager->
357    SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
358  eProcessManager->
359    SetProcessOrdering(theeminusIonisation,         idxPostStep,2);
360  eProcessManager->
361    SetProcessOrdering(theeminusBremsstrahlung,     idxPostStep,3);
362
363  pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
364  pProcessManager->
365    SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
366  pProcessManager->
367    SetProcessOrdering(theeplusIonisation,         idxAlongStep,2);
368
369  pProcessManager->
370    SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
371  pProcessManager->
372    SetProcessOrdering(theeplusIonisation,         idxPostStep,2);
373  pProcessManager->
374    SetProcessOrdering(theeplusBremsstrahlung,     idxPostStep,3);
375  pProcessManager->
376    SetProcessOrdering(theeplusAnnihilation,       idxPostStep,4);
377 
378  // Create a DynamicParticle 
379 
380  //  G4double eEnergy = initEnergy*keV;
381  G4double eEnergy = initEnergy;
382 
383  //  G4cout << eEnergy/keV << " INIT ENERGY (keV)" << G4endl;
384
385  G4ParticleMomentum eDirection(initX,initY,initZ);
386  G4DynamicParticle dynamicGamma(G4Gamma::Gamma(),eDirection,eEnergy);
387
388  G4cout << eDirection << " Direction" << G4endl;
389
390
391  //  if (processType == 3 || processType == 4)
392  //  {
393      G4double PolX, PolY, PolZ;
394      G4cout << "Polarization Vector" << G4endl;
395      G4cin >> PolX >> PolY >> PolZ;
396      dynamicGamma.SetPolarization(PolX, PolY, PolZ);
397      //G4cout << "polarization" << dynamicGamma.GetPolarization() << G4endl;
398      //   }
399 
400
401  dynamicGamma.DumpInfo();
402
403  // Track
404 
405  G4ThreeVector aPosition(0.,0.,0.);
406  G4double aTime = 0. ;
407 
408  G4Track* gTrack = new G4Track(&dynamicGamma,aTime,aPosition);
409
410  G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);   
411  gTrack->SetTouchable(touche);
412
413  // Step
414 
415  G4Step* step = new G4Step(); 
416  step->SetTrack(gTrack);
417
418  G4StepPoint* aPoint = new G4StepPoint();
419  aPoint->SetPosition(aPosition);
420  aPoint->SetMaterial(material);
421  G4double safety = 10000.*cm;
422  aPoint->SetSafety(safety);
423  step->SetPreStepPoint(aPoint);
424 
425  // Check applicability
426 
427  if (! (gammaProcess->IsApplicable(*gamma)))
428    {
429      G4Exception("Not Applicable");
430    }
431  else 
432    {
433      G4cout<< "applicability OK" << G4endl;
434    }
435 
436  // Initialize the physics tables (in which material?)
437
438  gammaProcess->BuildPhysicsTable(*gamma);
439
440  theeminusMultipleScattering->BuildPhysicsTable(*electron);
441  theeminusIonisation->BuildPhysicsTable(*electron);       
442  theeminusBremsstrahlung->BuildPhysicsTable(*electron);
443  theeplusMultipleScattering->BuildPhysicsTable(*positron);
444  theeplusIonisation->BuildPhysicsTable(*positron);
445  theeplusBremsstrahlung->BuildPhysicsTable(*positron);     
446  theeplusAnnihilation->BuildPhysicsTable(*positron) ;
447
448  //  G4cout<< "table OK" << endl;
449 
450  /*
451
452  // Test GetMeanFreePath()
453 
454  G4Material* apttoMaterial ;
455  G4String MaterialName ;
456 
457  G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
458  const G4int pntNum = 300;
459  G4double Tkin[pntNum+1];
460  G4double meanFreePath=0. ;
461
462  argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
463 
464  for(G4int d = 0; d < pntNum+1; d++)
465    {
466      Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
467    }
468 
469  G4double sti = 1.*mm;
470  step->SetStepLength(sti);
471 
472  //  for ( G4int J = 0 ; J < nMaterials ; J++ )
473  //  {
474  apttoMaterial = (*theMaterialTable)[materialId] ;
475  MaterialName  = apttoMaterial->GetName() ;
476  logicalFrame->SetMaterial(apttoMaterial);
477 
478  gTrack->SetStep(step);
479
480  G4LowEnergyCompton* gammaLowEProcess =
481    (G4LowEnergyCompton*) gammaProcess;
482  G4ComptonScattering* gammaStdProcess =
483    (G4ComptonScattering*) gammaProcess;
484 
485 
486  for (G4int i=0 ; i<pntNum; i++)
487    {
488      dynamicGamma.SetKineticEnergy(Tkin[i]);
489      if (processType == 1)
490        {
491          meanFreePath=gammaLowEProcess
492            ->GetMeanFreePath(*gTrack, sti, condition);
493        }
494      else
495        {
496          meanFreePath=gammaStdProcess
497            ->GetMeanFreePath(*gTrack, sti, condition);
498        }
499
500      ntuple3->column("kinen",Tkin[i]);
501      ntuple3->column("mfp",meanFreePath/cm);
502      ntuple3->dumpData();
503   
504      //      G4cout << meanFreePath/cm << G4endl;
505
506    }
507  G4cout << "Mean Free Path OK" << G4endl;
508  */
509 
510  // --------- Test the DoIt
511 
512  G4cout << "DoIt in " << material->GetName() << G4endl;
513
514  dynamicGamma.SetKineticEnergy(eEnergy);
515  dynamicGamma.SetMomentumDirection(initX,initY,initZ);
516
517  for (G4int iter=0; iter<nIterations; iter++)
518    {
519     
520      step->SetStepLength(1*micrometer);
521     
522
523
524      G4cout  <<  "Iteration = "  <<  iter
525              << "  -  Step Length = " 
526              << step->GetStepLength()/mm << " mm "
527              << G4endl;
528     
529      gTrack->SetStep(step); 
530
531      G4StepPoint* preStep  = step->GetPreStepPoint();
532      G4StepPoint* postStep = step->GetPostStepPoint();
533      G4ThreeVector prePosition = preStep->GetPosition();
534      G4ThreeVector postPosition = postStep->GetPosition();
535
536      //G4cout << prePosition << "pre step point "<< G4endl;
537      //G4cout << postPosition << "post step point "<< G4endl;
538
539      G4ThreeVector polInitial=dynamicGamma.GetPolarization();
540
541      G4cout << polInitial << " Initial Polarization" << G4endl;
542
543      G4VParticleChange* dummy;
544      dummy = gammaProcess->PostStepDoIt(*gTrack, *step);
545      G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
546     
547
548      // Primary physical quantities
549
550
551      //      particleChange->DumpInfo();
552     
553      G4double energyChange = particleChange->GetEnergyChange();
554     
555      G4double dedx = initEnergy - energyChange ;
556
557      G4double dedxNow = dedx / (step->GetStepLength());
558     
559      G4ThreeVector eChange = 
560        particleChange->CalcMomentum(energyChange,
561                                     (*particleChange->GetMomentumChange()),
562                                     particleChange->GetMassChange());
563
564      G4double pxChange  = eChange.x();
565      G4double pyChange  = eChange.y();
566      G4double pzChange  = eChange.z();
567      G4double pChange   = 
568        std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
569      G4double thetaChange = eChange.theta();
570
571
572      const G4ThreeVector* momChange =particleChange->GetMomentumDirectionChange();
573
574      G4cout << (momChange->x()) << " " <<  (momChange->y()) << " "  << (momChange->z()) << " "  << G4endl;
575
576      G4cout << eChange << "newdir" << G4endl;
577      G4double phiChange = eChange.phi();
578
579      G4double xChange = particleChange->GetPositionChange()->x();
580      G4double yChange = particleChange->GetPositionChange()->y();
581      G4double zChange = particleChange->GetPositionChange()->z();
582     
583      //G4cout << "Theta " <<  thetaChange << G4endl;
584      //G4cout << "Phi " <<  phiChange << G4endl;
585
586      G4cout << "---- Primary after the step ---- " << G4endl;
587 
588      G4cout << "Position (x,y,z) = " 
589             << xChange << "  " 
590             << yChange << "   " 
591             << zChange << "   " 
592             << G4endl;
593
594      G4cout << " Initial Energy " << initEnergy/keV << " keV" << G4endl; 
595      G4cout << "---- Energy: " << energyChange/MeV << " MeV,  " 
596             << "(px,py,pz): ("
597             << pxChange/keV << ","
598             << pyChange/keV << "," 
599             << pzChange/keV << ") keV"
600             << G4endl;
601      /*      G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
602              G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
603      */
604
605
606      G4double electronMass = 511.22*keV; // da inserire la definizione
607
608      G4double Ratio = energyChange/ 
609        (initEnergy/(1 + (initEnergy*(1-std::cos(thetaChange))/electronMass))); 
610      // testenergy
611
612      //G4cout << Ratio << "RATIO" << G4endl;
613      //G4cout << energyChange/keV << "ENERGY (keV)" << G4endl;
614
615
616      const G4ThreeVector* polChange=particleChange->GetPolarizationChange();
617
618
619      //G4cout << pxChange/pChange << "X" << G4endl;
620      //G4cout << pyChange/pChange << "Y" << G4endl;
621      //G4cout << pzChange/pChange << "Z" << G4endl;
622
623      //G4cout << polChange->x() << "pol X" << G4endl;
624      //G4cout << polChange->y() << "pol Y" << G4endl;
625      //G4cout << polChange->z() << "pol Z" << G4endl;
626      //G4cout << polChange->mag() << "pol mag" << G4endl;
627
628
629      G4double ScalarProduct = (polChange->x())*(pxChange/pChange)+
630        (pyChange/pChange)*(polChange->y())+
631        (pzChange/pChange)*(polChange->z());
632     
633      //G4cout << ScalarProduct << "scalar product" << G4endl;
634
635      hgETot->accumulate(energyChange/keV);
636      hgP->accumulate(pChange/keV);
637      hgTheta->accumulate(thetaChange);
638      hgPhi->accumulate(phiChange);
639      hgRapp->accumulate(Ratio);
640     
641      // Secondaries
642
643      ntuple1->column("eprimary", initEnergy/keV);
644      ntuple1->column("energyf", energyChange/keV);
645      ntuple1->column("de", dedx/keV);
646      ntuple1->column("dedx", dedxNow/keV);
647      ntuple1->column("pxch", pxChange);
648      ntuple1->column("pych", pyChange);
649      ntuple1->column("pzch", pzChange);
650      ntuple1->column("pch", pChange);
651      ntuple1->column("polx",(polInitial.x()));
652      ntuple1->column("poly",(polInitial.y()));
653      ntuple1->column("polz",(polInitial.z()));
654      ntuple1->column("polchx",(polChange->x()));
655      ntuple1->column("polchy",(polChange->y()));
656      ntuple1->column("polchz",(polChange->z()));
657      ntuple1->column("thetach", thetaChange); 
658      ntuple1->column("phich", phiChange); 
659      ntuple1->dumpData(); 
660
661      // Secondaries physical quantities
662     
663      hNSec->accumulate(particleChange->GetNumberOfSecondaries());
664      hDebug->accumulate(particleChange->GetLocalEnergyDeposit());
665     
666      G4cout << " secondaries " << 
667        particleChange->GetNumberOfSecondaries() << G4endl;
668
669      G4double Etotal = 0.;
670      Etotal += energyChange;
671
672      //G4cout << " Total energy" << Etotal << G4endl;     
673
674      for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) 
675        {
676          // The following two items should be filled per event, not
677          // per secondary; filled here just for convenience, to avoid
678          // complicated logic to dump ntuple when there are no secondaries
679         
680          G4Track* finalParticle = particleChange->GetSecondary(i) ;
681         
682          G4double e    = finalParticle->GetTotalEnergy();
683          G4double eKin = finalParticle->GetKineticEnergy();
684          G4double px   = (finalParticle->GetMomentum()).x();
685          G4double py   = (finalParticle->GetMomentum()).y();
686          G4double pz   = (finalParticle->GetMomentum()).z();
687          G4double theta   = (finalParticle->GetMomentum()).theta();
688          G4double p   = std::sqrt(px*px+py*py+pz*pz);
689         
690          if (eKin > initEnergy)
691            {
692              G4cout << "WARNING: eKinFinal > eKinInit " << G4endl;
693              //             << e
694              //                     << " > " initEnergy
695             
696            }
697         
698          G4String particleName = 
699            finalParticle->GetDefinition()->GetParticleName();
700          G4cout  << "==== Final " 
701                  <<  particleName  <<  " " 
702                  << "energy: " <<  e/keV  <<  " keV,  " 
703                  << "eKin: " <<  eKin/keV  <<  " keV, " 
704                  << "(px,py,pz): ("
705                  <<  px/keV  <<  "," 
706                  <<  py/keV  <<  ","
707                  <<  pz/keV  << ") keV "
708                  <<  G4endl;   
709
710          //      G4cout << " energia secondaria" << e << G4endl;     
711         
712          heETot->accumulate(eKin/keV);
713          heP->accumulate(p/keV);
714         
715          Etotal += eKin;     
716          //G4cout << " energia totale" << Etotal << G4endl;     
717         
718          G4int partType;
719          if (particleName == "e-") partType = 1;
720          else if (particleName == "e+") partType = 2;
721          else if (particleName == "gamma") partType = 3;
722         
723          // Fill the secondaries ntuple
724
725          ntuple2->column("event",iter);
726          ntuple2->column("eprimary",initEnergy/keV);
727          ntuple2->column("px", px);
728          ntuple2->column("py", py);
729          ntuple2->column("pz", pz);
730          ntuple2->column("p", p);
731          ntuple2->column("e", e/keV);
732          ntuple2->column("theta", theta);
733          ntuple2->column("ekin", eKin/keV);
734          ntuple2->column("type", partType);
735         
736          ntuple2->dumpData(); 
737         
738          delete particleChange->GetSecondary(i);
739        }
740
741      //      G4cout << Etotal/keV << " E total (keV) " << G4endl;
742      hSumE->accumulate(Etotal/keV);
743      particleChange->Clear();
744     
745    } 
746 
747 
748  //  G4cout  << "Iteration number: "  <<  iter << G4endl;
749  hbookManager->write();
750  delete hbookManager;
751 
752  delete step;
753
754  G4cout << "END OF THE MAIN PROGRAM" << G4endl;
755}
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
Note: See TracBrowser for help on using the repository browser.