// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4LowEnergyTest.cc,v 1.9 2006/06/29 19:44:10 gunter Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // KaonMinusAtRestTest.cc // ------------------------------------------------------------------- // GEANT 4 class file --- Copyright CERN 1998 // CERN Geneva Switzerland // // // File name: G4LowEnergyTest // // Author: Christian Voelcker (from M. Maire) // // Creation date: ? // // Modifications: // // Alessandra Forti march 1999 added ntuples // Alessandra Forti march 1999 added processes // Alessandra Forti march 1999 added cut in energy // ------------------------------------------------------------------- #include "G4ios.hh" #include #include #include "G4Material.hh" #include "G4ProcessManager.hh" #include "G4LowEnergyPhotoElectric.hh" #include "G4LowEnergyCompton.hh" #include "G4LowEnergyRayleigh.hh" #include "G4LowEnergyGammaConversion.hh" #include "G4LowEnergyBremsstrahlung.hh" #include "G4LowEnergyIonisation.hh" #include "G4eIonisation.hh" #include "G4hIonisation.hh" #include "G4VParticleChange.hh" #include "G4ParticleChange.hh" #include "G4DynamicParticle.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Gamma.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4Step.hh" #include "G4GRSVolume.hh" #include "CLHEP/Hist/TupleManager.h" #include "CLHEP/Hist/HBookFile.h" #include "CLHEP/Hist/Histogram.h" #include "CLHEP/Hist/Tuple.h" HepTupleManager* hbookManager; main() { // Setup G4int niter=1e4; G4int imat=2; G4int verboseLevel=1; G4int processID=6; G4cout << "How many interactions? [10], Which material? [3], which Verbose Level? [1]" << G4endl; G4cin >> niter >> imat >> verboseLevel; G4cout<<"which process?"<> processID; G4double InitEnergy = 1e-3, InitX = 0., InitY = 0., InitZ = 1.; G4cout<<"Enter the initial particle energy E and its direction"<> InitEnergy >> InitX >> InitY >> InitZ; G4double gammaCut = 1e-3, electronCut = 1e-3; G4cout<<"Set photons 1e-3 mm and electrons cuts 1e-3 mm"<>gammaCut>>electronCut; //-------- write results onto a file -------- // std::ofstream outFile1( "lowenergypri.out", std::ios::out); // std::ofstream outFile2( "lowenergysec.out", std::ios::out); // std::ofstream outFile3( "lowenergymfp.out", std::ios::out); // outFile1.setf( std::ios::scientific, std::ios::floatfield); // outFile2.setf( std::ios::scientific, std::ios::floatfield); // outFile3.setf( std::ios::scientific, std::ios::floatfield); // outFile1.setf(std::ios::left); // outFile2.setf(std::ios::left); // outFile3.setf(std::ios::left); G4cout.setf( std::ios::scientific, std::ios::floatfield ); // ------------------------------------------------------------------- // ALE ---- HBOOK initialization if(processID == 1){ hbookManager = new HBookFile("photoelectric.hbook", 58); assert (hbookManager != 0); } else if(processID == 2){ hbookManager = new HBookFile("compton.hbook", 58); assert (hbookManager != 0); } else if(processID == 3){ hbookManager = new HBookFile("rayleigh.hbook", 58); assert (hbookManager != 0); } else if(processID == 4){ hbookManager = new HBookFile("gammaconv.hbook", 58); assert (hbookManager != 0); } else if(processID == 5){ hbookManager = new HBookFile("bremstrahlung.hbook", 58); assert (hbookManager != 0); } else if(processID == 6){ hbookManager = new HBookFile("ionisation.hbook", 58); assert (hbookManager != 0); } // ALE ---- Book a histogram and ntuples G4cout<<"Hbook file name: "<<((HBookFile*) hbookManager)->filename()<ntuple("Primary Ntuple"); assert (ntuple1 != 0); // ---- secondaries ntuple ------ HepTuple* ntuple2 = hbookManager->ntuple("Secondaries Ntuple"); assert (ntuple2 != 0); // ---- mfp ntuple ------ HepTuple* ntuple3 = hbookManager->ntuple("MeanFreePath Ntuple"); assert (ntuple3 != 0); // ---- secondaries histos ---- HepHistogram* hEKin; hEKin = hbookManager->histogram("Kinetic Energy", 100,0.,200.); assert (hEKin != 0); HepHistogram* hP; hP = hbookManager->histogram("Momentum", 100,0.,1000.); assert (hP != 0); HepHistogram* hNSec; hNSec = hbookManager->histogram("Number of secondaries", 40,0.,40.); assert (hNSec != 0); HepHistogram* hDebug; hDebug = hbookManager->histogram("Debug", 100,0.,200.); assert (hDebug != 0); //--------- Materials definition --------- G4Material* Be = new G4Material("Beryllium", 4., 9.01*g/mole, 1.848*g/cm3); G4Material* Graphite = new G4Material("Graphite",6., 12.00*g/mole, 2.265*g/cm3 ); G4Material* Al = new G4Material("Aluminium", 13., 26.98*g/mole, 2.7 *g/cm3); G4Material* LAr = new G4Material("LArgon", 18., 39.95*g/mole, 1.393*g/cm3); G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3); G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3); G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3); G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3); G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3); G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole); G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole); G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole); G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole); G4Element* I = new G4Element ("Iodide" , "I", 53. , 126.9044*g/mole); G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3); G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2); water->AddElement(H,2); water->AddElement(O,1); G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2); ethane->AddElement(H,6); ethane->AddElement(C,2); G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2); csi->AddElement(Cs,1); csi->AddElement(I,1); static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); G4cout<<"The material is: "<<(*theMaterialTable)(imat)->GetName()<SetProcessManager(theGammaProcessManager); G4ProcessManager* theElectronProcessManager = new G4ProcessManager(electron); electron->SetProcessManager(theElectronProcessManager); G4ProcessManager* thePositronProcessManager = new G4ProcessManager(positron); positron->SetProcessManager(thePositronProcessManager); G4ProcessManager* theProtonProcessManager = new G4ProcessManager(proton); proton->SetProcessManager(theProtonProcessManager); G4LowEnergyPhotoElectric PhotoElectricProcess; G4LowEnergyCompton ComptonProcess; G4LowEnergyRayleigh RayleighProcess; G4LowEnergyGammaConversion GammaConvProcess; theGammaProcessManager->AddDiscreteProcess(&PhotoElectricProcess); theGammaProcessManager->AddDiscreteProcess(&ComptonProcess); theGammaProcessManager->AddDiscreteProcess(&RayleighProcess); theGammaProcessManager->AddDiscreteProcess(&GammaConvProcess); G4LowEnergyIonisation IonisationProcess; theElectronProcessManager->AddProcess(&IonisationProcess); theElectronProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1); theElectronProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep,1); G4LowEnergyBremsstrahlung BremstrahlungProcess; theElectronProcessManager->AddProcess(&BremstrahlungProcess); theElectronProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1); theElectronProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep,1); G4eIonisation IonisationPlusProcess; thePositronProcessManager->AddProcess(&IonisationPlusProcess); thePositronProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1); thePositronProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1); G4hIonisation hIonisationProcess; theProtonProcessManager->AddProcess(&hIonisationProcess); theProtonProcessManager->SetProcessOrdering(&hIonisationProcess,idxAlongStep,1); theProtonProcessManager->SetProcessOrdering(&hIonisationProcess,idxPostStep,1); G4ForceCondition* condition; // ------- set cut and Build CrossSection Tables ------- // G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV); G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV); G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV); gamma->SetCuts(1e-6*mm); electron->SetCuts(1e-6*mm); positron->SetCuts(1e-6*mm); G4cout<<"the cut in energy for gamma in: "<<(*theMaterialTable)(imat)->GetName() <<" is: "<GetName() <<" is: "<SetTouchable(touche); // -------- create 1 Step (for this test only)---- G4Step* Step = new G4Step(); G4Step& aStep = (*Step); Step->SetTrack(ptrack); // --------- check applicability G4ParticleDefinition* PhotonDefinition = photon.GetDefinition(); G4ParticleDefinition* ElectronDefinition = elecT.GetDefinition(); if(!PhotoElectricProcess.IsApplicable(*PhotonDefinition) || !ComptonProcess.IsApplicable(*PhotonDefinition) || !RayleighProcess.IsApplicable(*PhotonDefinition) || !GammaConvProcess.IsApplicable(*PhotonDefinition) || !BremstrahlungProcess.IsApplicable(*ElectronDefinition)|| !IonisationProcess.IsApplicable(*ElectronDefinition)) { G4cout << PhotonDefinition->GetParticleName() << " is not a Photon! or " << ElectronDefinition->GetParticleName() <<" is not an Electron"<GetName() ; LogicalFrame->SetMaterial(apttoMaterial); for (G4int i=0 ; icolumn("matind",J); ntuple3->column("kinen",Tkin[i]); ntuple3->column("mfp",meanFreePath); ntuple3->dumpData(); // outFile3<SetMaterial(apttoMaterial); if(processID != 5 && processID != 6){ photon.SetKineticEnergy(InitEnergy*MeV); photon.SetMomentumDirection(InitX, InitY, InitZ); } else{ elecT.SetKineticEnergy(InitEnergy*MeV); elecT.SetMomentumDirection(InitX, InitY, InitZ); } // PostStepDoIt calls G4int iteration = 0; G4VParticleChange* adummy; G4Track* aFinalParticle; G4String aParticleName; do { if(processID == 1){ adummy = PhotoElectricProcess.PostStepDoIt(aTrack, aStep); } else if(processID == 2) { adummy = ComptonProcess.PostStepDoIt(aTrack, aStep); } else if(processID == 3) { adummy = RayleighProcess.PostStepDoIt(aTrack, aStep); } else if(processID == 4) { adummy = GammaConvProcess.PostStepDoIt(aTrack, aStep); } else if(processID == 5) { adummy = BremstrahlungProcess.PostStepDoIt(aTrack, aStep); } else if(processID == 6) { adummy = IonisationProcess.PostStepDoIt(aTrack, aStep); } else { G4Exception("No such process!\n"); } G4ParticleChange* aParticleChange = (G4ParticleChange*) adummy; // ------------ book primary physical quantities ------------- G4double pEnChange = 0, pxChange = 0, pyChange = 0, pzChange = 0, PChange = 0; pEnChange = aParticleChange->GetEnergyChange(); pxChange = aParticleChange->GetMomentumChange()->x(); pyChange = aParticleChange->GetMomentumChange()->y(); pzChange = aParticleChange->GetMomentumChange()->z(); PChange = std::sqrt(pxChange*pxChange+pyChange*pyChange+pzChange*pzChange); // ---- secondaries histos ---- G4cout<<"E and p of the primary particle: "<column("ench", pEnChange); ntuple1->column("pxch", pxChange); ntuple1->column("pych", pyChange); ntuple1->column("pzch", pzChange); ntuple1->column("pch", PChange); // outFile1<dumpData(); // ------------ book secondaries physical quantities --------- G4double e = 0, eKin = 0, Px = 0, Py = 0, Pz = 0, P = 0, ShID = 0; // hNSec->accumulate(aParticleChange->GetNumberOfSecondaries()); // hDebug->accumulate(aParticleChange->GetLocalEnergyDeposit()); for (G4int i = 0; i < (aParticleChange->GetNumberOfSecondaries()); i++) { // The following two items should be filled per event, not // per secondary; filled here just for convenience, to avoid // complicated logic to dump ntuple when there are no secondaries ntuple2->column("nsec",aParticleChange->GetNumberOfSecondaries()); ntuple2->column("deposit",aParticleChange->GetLocalEnergyDeposit()); aFinalParticle = aParticleChange->GetSecondary(i) ; e = aFinalParticle->GetTotalEnergy(); eKin = aFinalParticle->GetKineticEnergy(); Px = (aFinalParticle->GetMomentum()).x(); Py = (aFinalParticle->GetMomentum()).y(); Pz = (aFinalParticle->GetMomentum()).z(); P = std::sqrt(Px*Px+Py*Py+Pz*Pz); if(processID == 1){ ShID = PhotoElectricProcess.GetTransitionShell(i); } else if(processID == 6){ ShID = IonisationProcess.GetTransitionShell(i); } aParticleName = aFinalParticle->GetDefinition()->GetParticleName(); G4cout<accumulate(eKin); hP->accumulate(std::sqrt(Px*Px+Py*Py+Pz*Pz)); G4int ptype; if(aParticleName == "gamma") ptype = 0; else if(aParticleName == "e-") ptype = -1; else if(aParticleName == "e+") ptype = 1; // Fill the secondaries ntuple ntuple2->column("px", Px); ntuple2->column("py", Py); ntuple2->column("pz", Pz); ntuple2->column("p", P); ntuple2->column("e", e); ntuple2->column("ekin", eKin); ntuple2->column("ptype", ptype); ntuple2->column("sh", ShID); ntuple2->dumpData(); // Print secondaries on a file // outFile2<GetNumberOfSecondaries()<GetLocalEnergyDeposit()<GetSecondary(i); } aParticleChange->Clear(); iteration++; G4cout << "******* Iteration = " << iteration << G4endl; } while (iteration < niter) ; cout<<"Iteration number: "<write(); delete hbookManager; // delete materials and elements delete Be; delete Graphite; delete Al; delete LAr; delete Fe; delete Cu; delete W; delete Pb; delete U; delete H; delete maO; delete C; delete Cs; delete I; delete O; delete water; delete ethane; delete csi; delete Step; delete touche; // outFile1.close(); // outFile2.close(); // outFile3.close(); cout<<"END OF THE MAIN PROGRAM"<