source: trunk/source/processes/electromagnetic/lowenergy/test/G4PenelopeAnnihilationTest.cc@ 1285

Last change on this file since 1285 was 1199, checked in by garnier, 16 years ago

nvx fichiers dans CVS

File size: 15.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4PenelopeAnnihilationTest.cc,v 1.4 2006/06/29 19:44:14 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// -------------------------------------------------------------------
31// GEANT 4 class file --- Copyright CERN 1998
32// CERN Geneva Switzerland
33//
34//
35// File name: G4PenelopeGammaConversionTest.cc
36//
37// Author: Francesco Longo
38//
39// Creation date: 04 january 2001
40//
41// Modifications: Luciano Pandola (03 july 2003)
42// Adapted in order to test G4PenelopeAnnihilationTest
43// Minor modification in n-tuple filling
44// Updated analysis to AIDA 3.0
45//
46// -------------------------------------------------------------------
47
48#include "globals.hh"
49#include "G4ios.hh"
50
51#include "G4ParticleDefinition.hh"
52#include "G4ParticleTypes.hh"
53#include "G4ParticleTable.hh"
54#include "G4Material.hh"
55#include "G4MaterialTable.hh"
56#include "G4VDiscreteProcess.hh"
57#include "G4VProcess.hh"
58#include "G4ProcessManager.hh"
59
60#include "G4PenelopeAnnihilation.hh"
61#include "G4eplusAnnihilation.hh"
62
63#include "G4EnergyLossTables.hh"
64#include "G4VParticleChange.hh"
65#include "G4ParticleChange.hh"
66#include "G4DynamicParticle.hh"
67#include "G4ForceCondition.hh"
68
69#include "G4PenelopeBremsstrahlung.hh"
70#include "G4PenelopeIonisation.hh"
71#include "G4MultipleScattering.hh"
72#include "G4eIonisation.hh"
73#include "G4eBremsstrahlung.hh"
74#include "G4eplusAnnihilation.hh"
75
76#include "G4ComptonScattering.hh"
77#include "G4PhotoElectricEffect.hh"
78
79#include "G4RunManager.hh"
80
81#include "G4Electron.hh"
82#include "G4Positron.hh"
83#include "G4Gamma.hh"
84
85#include "G4GRSVolume.hh"
86#include "G4Box.hh"
87#include "G4PVPlacement.hh"
88#include "G4Step.hh"
89#include "G4ProductionCutsTable.hh"
90#include "G4MaterialCutsCouple.hh"
91
92#include "G4UnitsTable.hh"
93#include "AIDA/IManagedObject.h"
94
95#include <memory>
96#include "AIDA/IAnalysisFactory.h"
97#include "AIDA/ITreeFactory.h"
98#include "AIDA/ITree.h"
99#include "AIDA/IHistogramFactory.h"
100#include "AIDA/IHistogram1D.h"
101#include "AIDA/IHistogram2D.h"
102#include "AIDA/IHistogram3D.h"
103#include "AIDA/ITupleFactory.h"
104#include "AIDA/ITuple.h"
105
106
107G4int main()
108{
109
110 // Setup
111
112 G4int nIterations = 100000;
113 G4int materialId = 3;
114
115 //G4cout.setf(std::ios::scientific,std::ios::floatfield );
116
117 // -------------------------------------------------------------------
118
119 // ---- HBOOK initialization
120
121 std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() );
122 std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory());
123 std::auto_ptr< AIDA::ITree > tree (tf->create("pen_ann_test.hbook","hbook",false,true));
124 G4cout << "Tree store: " << tree->storeName() << G4endl;
125 std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree));
126 std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree));
127
128 // ---- secondary ntuple ------
129 AIDA::ITuple* ntuple1 = tpf->create("1","Secondary Ntuple","double eprimary,px_1,py_1,pz_1,e_1,theta_1,px_2,py_2,pz_2,e_2,theta_2");
130
131 // ---- table ntuple ------
132 AIDA::ITuple* ntuple2 = tpf->create("2","Mean Free Path Ntuple","double kinen,mfp");
133
134
135 //--------- Materials definition ---------
136
137 G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3);
138 G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3);
139 G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3);
140 G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
141 G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3);
142 G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
143
144 G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole);
145 G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole);
146 G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole);
147 G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole);
148 G4Element* I = new G4Element ("Iodine" , "I", 53. , 126.9044*g/mole);
149
150 G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
151
152 G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
153 water->AddElement(H,2);
154 water->AddElement(O,1);
155
156 G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
157 ethane->AddElement(H,6);
158 ethane->AddElement(C,2);
159
160 G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
161 csi->AddElement(Cs,1);
162 csi->AddElement(I,1);
163
164
165 // Interactive set-up
166
167 G4cout << "How many interactions? " << G4endl;
168 G4cin >> nIterations;
169
170 if (nIterations <= 0) G4Exception("Wrong input");
171
172 G4double initEnergy = 1.0*MeV;
173 G4double initX = 0.;
174 G4double initY = 0.;
175 G4double initZ = 1.;
176
177 G4cout << "Enter the initial particle energy E (MeV)" << G4endl;
178 G4cin >> initEnergy ;
179
180 initEnergy = initEnergy*MeV;
181
182 if (initEnergy < 0.) G4Exception("Wrong input");
183
184 static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
185
186 G4int nMaterials = G4Material::GetNumberOfMaterials();
187
188 G4cout << "Available materials are: " << G4endl;
189 for (G4int mat = 0; mat < nMaterials; mat++)
190 {
191 G4cout << mat << ") "
192 << (*theMaterialTable)[mat]->GetName()
193 << G4endl;
194 }
195
196 G4cout << "Which material? " << G4endl;
197 G4cin >> materialId;
198
199 G4Material* material = (*theMaterialTable)[materialId] ;
200
201 G4cout << "The selected material is: "
202 << material->GetName()
203 << G4endl;
204
205 G4double dimX = 1*mm;
206 G4double dimY = 1*mm;
207 G4double dimZ = 1*mm;
208
209 // Geometry
210
211 G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
212
213 G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
214 (*theMaterialTable)[materialId],
215 "LFrame", 0, 0, 0);
216 logicalFrame->SetMaterial(material);
217
218 G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
219 "PFrame",logicalFrame,0,false,0);
220
221 G4RunManager* rm = new G4RunManager();
222 G4cout << "World is defined " << G4endl;
223 rm->GeometryHasBeenModified();
224 rm->DefineWorldVolume(physicalFrame);
225
226 // Particle definitions
227
228 G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
229 G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
230 G4ParticleDefinition* positron = G4Positron::PositronDefinition();
231
232 G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable();
233 G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts();
234 G4double cutG=1*micrometer;
235 G4double cutE=1*micrometer;
236 cuts->SetProductionCut(cutG, 0); //gammas
237 cuts->SetProductionCut(cutE, 1); //electrons
238 cuts->SetProductionCut(cutE, 2); //positrons
239 G4cout << "Cuts are defined " << G4endl;
240
241 //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
242 //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
243 //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
244
245 cutsTable->UpdateCoupleTable();
246 //cutsTable->DumpCouples();
247 const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts);
248 G4int indx=theCouple->GetIndex();
249
250 // Processes
251
252
253 G4int processType;
254 G4cout << "Standard [1] or Penelope [2] Positron Annihilation?" << G4endl;
255 G4cin >> processType;
256 if ( !(processType == 1 || processType == 2))
257 {
258 G4Exception("Wrong input");
259 }
260
261 G4VProcess* positronProcess;
262
263 if (processType == 1)
264 {
265 positronProcess = new G4eplusAnnihilation();
266 G4cout << "The selected model is Standard" << G4endl;
267 }
268 else if (processType == 2)
269 {
270 positronProcess = new G4PenelopeAnnihilation();
271 G4cout << "The selected model is Penelope" << G4endl;
272 }
273
274 G4VProcess* theeplusMultipleScattering = new G4MultipleScattering();
275 G4VProcess* theeplusIonisation = new G4PenelopeIonisation();
276 G4VProcess* theeplusBremsstrahlung = new G4PenelopeBremsstrahlung();
277
278 //----------------
279 // process manager
280 //----------------
281
282
283 G4ForceCondition* condition;
284
285 //positron
286
287 G4ProcessManager* pProcessManager = new G4ProcessManager(positron);
288 positron->SetProcessManager(pProcessManager);
289 pProcessManager->AddProcess(positronProcess);
290
291 // Create a DynamicParticle
292
293 G4double eEnergy = initEnergy*MeV;
294 G4ParticleMomentum eDirection(initX,initY,initZ);
295 G4DynamicParticle dynamicPositron(positron,eDirection,eEnergy);
296
297 dynamicPositron.DumpInfo(0);
298
299 // Track
300
301 G4ThreeVector aPosition(0.,0.,0.);
302 G4double aTime = 0. ;
303
304 G4Track* gTrack = new G4Track(&dynamicPositron,aTime,aPosition);
305
306 G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);
307 gTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!!
308
309
310 // Step
311
312 G4Step* step = new G4Step();
313 step->SetTrack(gTrack);
314
315 G4StepPoint* aPoint = new G4StepPoint();
316 aPoint->SetPosition(aPosition);
317 aPoint->SetMaterial(material);
318 aPoint->SetMaterialCutsCouple(theCouple);
319 G4double safety = 10000.*cm;
320 aPoint->SetSafety(safety);
321 step->SetPreStepPoint(aPoint);
322
323 // Check applicability
324
325 if (! (positronProcess->IsApplicable(*positron)))
326 {
327 G4Exception("Not Applicable");
328 }
329 else
330 {
331 G4cout<< "applicability OK" << G4endl;
332 }
333
334 positronProcess->BuildPhysicsTable(*positron);
335
336 G4cout<< "table OK" << G4endl;
337
338 // Test GetMeanFreePath()
339 // E' protected! Il membro accessibile e' DumpMeanFreePath()
340
341 G4Material* apttoMaterial ;
342 G4String MaterialName ;
343
344 G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
345 const G4int pntNum = 300;
346 G4double Tkin[pntNum+1];
347 G4double meanFreePath=0. ;
348
349 argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
350
351 for(G4int d = 0; d < pntNum+1; d++)
352 {
353 Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
354 }
355
356 G4double sti = 1.*mm;
357 step->SetStepLength(sti);
358
359 // for ( G4int J = 0 ; J < nMaterials ; J++ )
360 // {
361 apttoMaterial = (*theMaterialTable)[materialId] ;
362 MaterialName = apttoMaterial->GetName() ;
363 logicalFrame->SetMaterial(apttoMaterial);
364
365 gTrack->SetStep(step);
366
367 G4eplusAnnihilation* positronStdProcess =
368 (G4eplusAnnihilation*) positronProcess;
369 G4PenelopeAnnihilation* positronPenProcess =
370 (G4PenelopeAnnihilation*) positronProcess;
371
372 for (G4int i=0 ; i<pntNum; i++)
373 {
374 dynamicPositron.SetKineticEnergy(Tkin[i]);
375 if (processType == 1)
376 {
377 meanFreePath=positronStdProcess
378 ->GetMeanFreePath(*gTrack, sti, condition);
379 }
380 else if (processType == 2)
381 {
382 meanFreePath=positronPenProcess
383 ->DumpMeanFreePath(*gTrack, sti, condition);
384 }
385
386 ntuple2->fill(ntuple2->findColumn("kinen"),Tkin[i]/MeV);
387 ntuple2->fill(ntuple2->findColumn("mfp"),meanFreePath/cm);
388 ntuple2->addRow();
389
390
391 // G4cout << meanFreePath/cm << G4endl;
392
393 }
394 G4cout << "Mean Free Path OK" << G4endl;
395
396 // --------- Test the DoIt
397
398 G4cout << "DoIt in " << material->GetName() << G4endl;
399
400
401 dynamicPositron.SetKineticEnergy(eEnergy);
402 G4int iter;
403 initEnergy += 2.0*electron_mass_c2;
404
405 for (iter=0; iter<nIterations; iter++)
406 {
407
408 step->SetStepLength(1*micrometer);
409
410 G4cout << "Iteration = " << iter
411 << " - Step Length = "
412 << step->GetStepLength()/mm << " mm "
413 << G4endl;
414
415
416 gTrack->SetStep(step);
417
418 G4VParticleChange* dummy;
419
420 G4cout << "eEnergy: " << eEnergy/MeV << " MeV" << G4endl;
421 if (eEnergy>0.0)
422 {
423 dummy = positronProcess->PostStepDoIt(*gTrack, *step);
424 G4cout << "Chiamo il Post Step " << G4endl;
425 }
426 else
427 {
428 dummy = positronProcess->AtRestDoIt(*gTrack,*step);
429 G4cout << "Chiamo l'At Rest" << G4endl;
430 }
431
432 G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
433
434 // Secondaries physical quantities
435
436 // Secondaries
437 G4cout << " secondaries " <<
438 particleChange->GetNumberOfSecondaries() << G4endl;
439 G4double px_1,py_1,pz_1,e_1,theta_1;
440 G4double px_2,py_2,pz_2,e_2,theta_2;
441
442
443 for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++)
444 {
445
446 G4Track* finalParticle = particleChange->GetSecondary(i) ;
447
448 G4double e = finalParticle->GetTotalEnergy();
449 G4double px = (finalParticle->GetMomentum()).x();
450 G4double py = (finalParticle->GetMomentum()).y();
451 G4double pz = (finalParticle->GetMomentum()).z();
452 G4double theta = (finalParticle->GetMomentum()).theta();
453 theta = theta/deg; //conversion in degrees
454 if (e > initEnergy)
455 {
456 G4cout << "WARNING: eFinal > eInit " << G4endl;
457 }
458
459 G4String particleName =
460 finalParticle->GetDefinition()->GetParticleName();
461 G4cout << "Initial energy " << eEnergy/MeV << G4endl;
462 G4cout << "==== Final "
463 << particleName << " "
464 << "energy: " << e/MeV << " MeV, "
465 << "(px,py,pz): ("
466 << px/MeV << ","
467 << py/MeV << ","
468 << pz/MeV << ") MeV "
469 << G4endl;
470
471 if (particleName == "gamma") {
472 if (i == 0) {
473 px_1=px;
474 py_1=py;
475 pz_1=pz;
476 e_1=e;
477 theta_1=theta;
478 }
479 else if (i == 1)
480 {
481 px_2 = px;
482 py_2 = py;
483 pz_2 = pz;
484 e_2 = e;
485 theta_2 = theta;
486 }
487 else
488 {
489 G4Exception("There are more than 3 gammas?!?");
490 }
491 }
492 delete particleChange->GetSecondary(i);
493 }
494
495 // Fill the secondaries ntuple
496
497 // Normalize all to the energy of primary
498 // for gammas initEnergy=initP
499 ntuple1->fill(ntuple1->findColumn("eprimary"),eEnergy);
500 ntuple1->fill(ntuple1->findColumn("px_1"),px_1/initEnergy);
501 ntuple1->fill(ntuple1->findColumn("py_1"),py_1/initEnergy);
502 ntuple1->fill(ntuple1->findColumn("pz_1"),pz_1/initEnergy);
503 ntuple1->fill(ntuple1->findColumn("e_1"),e_1/initEnergy);
504 ntuple1->fill(ntuple1->findColumn("theta_1"),theta_1);
505 ntuple1->fill(ntuple1->findColumn("px_2"),px_2/initEnergy);
506 ntuple1->fill(ntuple1->findColumn("py_2"),py_2/initEnergy);
507 ntuple1->fill(ntuple1->findColumn("pz_2"),pz_2/initEnergy);
508 ntuple1->fill(ntuple1->findColumn("e_2"),e_2/initEnergy);
509 ntuple1->fill(ntuple1->findColumn("theta_2"),theta_2);
510 ntuple1->addRow();
511 particleChange->Clear();
512
513 }
514
515
516 G4cout << "Iteration number: " << iter << G4endl;
517
518 G4cout << "Committing.............." << G4endl;
519 tree->commit();
520 G4cout << "Closing the tree........" << G4endl;
521 tree->close();
522
523 delete step;
524
525
526 G4cout << "END OF THE MAIN PROGRAM" << G4endl;
527 return 0;
528}
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
Note: See TracBrowser for help on using the repository browser.