// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PenelopeAnnihilationTest.cc,v 1.4 2006/06/29 19:44:14 gunter Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // ------------------------------------------------------------------- // GEANT 4 class file --- Copyright CERN 1998 // CERN Geneva Switzerland // // // File name: G4PenelopeGammaConversionTest.cc // // Author: Francesco Longo // // Creation date: 04 january 2001 // // Modifications: Luciano Pandola (03 july 2003) // Adapted in order to test G4PenelopeAnnihilationTest // Minor modification in n-tuple filling // Updated analysis to AIDA 3.0 // // ------------------------------------------------------------------- #include "globals.hh" #include "G4ios.hh" #include "G4ParticleDefinition.hh" #include "G4ParticleTypes.hh" #include "G4ParticleTable.hh" #include "G4Material.hh" #include "G4MaterialTable.hh" #include "G4VDiscreteProcess.hh" #include "G4VProcess.hh" #include "G4ProcessManager.hh" #include "G4PenelopeAnnihilation.hh" #include "G4eplusAnnihilation.hh" #include "G4EnergyLossTables.hh" #include "G4VParticleChange.hh" #include "G4ParticleChange.hh" #include "G4DynamicParticle.hh" #include "G4ForceCondition.hh" #include "G4PenelopeBremsstrahlung.hh" #include "G4PenelopeIonisation.hh" #include "G4MultipleScattering.hh" #include "G4eIonisation.hh" #include "G4eBremsstrahlung.hh" #include "G4eplusAnnihilation.hh" #include "G4ComptonScattering.hh" #include "G4PhotoElectricEffect.hh" #include "G4RunManager.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Gamma.hh" #include "G4GRSVolume.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4Step.hh" #include "G4ProductionCutsTable.hh" #include "G4MaterialCutsCouple.hh" #include "G4UnitsTable.hh" #include "AIDA/IManagedObject.h" #include #include "AIDA/IAnalysisFactory.h" #include "AIDA/ITreeFactory.h" #include "AIDA/ITree.h" #include "AIDA/IHistogramFactory.h" #include "AIDA/IHistogram1D.h" #include "AIDA/IHistogram2D.h" #include "AIDA/IHistogram3D.h" #include "AIDA/ITupleFactory.h" #include "AIDA/ITuple.h" G4int main() { // Setup G4int nIterations = 100000; G4int materialId = 3; //G4cout.setf(std::ios::scientific,std::ios::floatfield ); // ------------------------------------------------------------------- // ---- HBOOK initialization std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() ); std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory()); std::auto_ptr< AIDA::ITree > tree (tf->create("pen_ann_test.hbook","hbook",false,true)); G4cout << "Tree store: " << tree->storeName() << G4endl; std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree)); std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree)); // ---- secondary ntuple ------ AIDA::ITuple* ntuple1 = tpf->create("1","Secondary Ntuple","double eprimary,px_1,py_1,pz_1,e_1,theta_1,px_2,py_2,pz_2,e_2,theta_2"); // ---- table ntuple ------ AIDA::ITuple* ntuple2 = tpf->create("2","Mean Free Path Ntuple","double kinen,mfp"); //--------- Materials definition --------- G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3); G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3); G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3); G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3); G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3); G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3); G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole); G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole); G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole); G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole); G4Element* I = new G4Element ("Iodine" , "I", 53. , 126.9044*g/mole); G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3); G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2); water->AddElement(H,2); water->AddElement(O,1); G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2); ethane->AddElement(H,6); ethane->AddElement(C,2); G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2); csi->AddElement(Cs,1); csi->AddElement(I,1); // Interactive set-up G4cout << "How many interactions? " << G4endl; G4cin >> nIterations; if (nIterations <= 0) G4Exception("Wrong input"); G4double initEnergy = 1.0*MeV; G4double initX = 0.; G4double initY = 0.; G4double initZ = 1.; G4cout << "Enter the initial particle energy E (MeV)" << G4endl; G4cin >> initEnergy ; initEnergy = initEnergy*MeV; if (initEnergy < 0.) G4Exception("Wrong input"); static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); G4int nMaterials = G4Material::GetNumberOfMaterials(); G4cout << "Available materials are: " << G4endl; for (G4int mat = 0; mat < nMaterials; mat++) { G4cout << mat << ") " << (*theMaterialTable)[mat]->GetName() << G4endl; } G4cout << "Which material? " << G4endl; G4cin >> materialId; G4Material* material = (*theMaterialTable)[materialId] ; G4cout << "The selected material is: " << material->GetName() << G4endl; G4double dimX = 1*mm; G4double dimY = 1*mm; G4double dimZ = 1*mm; // Geometry G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ); G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame, (*theMaterialTable)[materialId], "LFrame", 0, 0, 0); logicalFrame->SetMaterial(material); G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(), "PFrame",logicalFrame,0,false,0); G4RunManager* rm = new G4RunManager(); G4cout << "World is defined " << G4endl; rm->GeometryHasBeenModified(); rm->DefineWorldVolume(physicalFrame); // Particle definitions G4ParticleDefinition* gamma = G4Gamma::GammaDefinition(); G4ParticleDefinition* electron = G4Electron::ElectronDefinition(); G4ParticleDefinition* positron = G4Positron::PositronDefinition(); G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable(); G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts(); G4double cutG=1*micrometer; G4double cutE=1*micrometer; cuts->SetProductionCut(cutG, 0); //gammas cuts->SetProductionCut(cutE, 1); //electrons cuts->SetProductionCut(cutE, 2); //positrons G4cout << "Cuts are defined " << G4endl; //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV); //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV); //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV); cutsTable->UpdateCoupleTable(); //cutsTable->DumpCouples(); const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts); G4int indx=theCouple->GetIndex(); // Processes G4int processType; G4cout << "Standard [1] or Penelope [2] Positron Annihilation?" << G4endl; G4cin >> processType; if ( !(processType == 1 || processType == 2)) { G4Exception("Wrong input"); } G4VProcess* positronProcess; if (processType == 1) { positronProcess = new G4eplusAnnihilation(); G4cout << "The selected model is Standard" << G4endl; } else if (processType == 2) { positronProcess = new G4PenelopeAnnihilation(); G4cout << "The selected model is Penelope" << G4endl; } G4VProcess* theeplusMultipleScattering = new G4MultipleScattering(); G4VProcess* theeplusIonisation = new G4PenelopeIonisation(); G4VProcess* theeplusBremsstrahlung = new G4PenelopeBremsstrahlung(); //---------------- // process manager //---------------- G4ForceCondition* condition; //positron G4ProcessManager* pProcessManager = new G4ProcessManager(positron); positron->SetProcessManager(pProcessManager); pProcessManager->AddProcess(positronProcess); // Create a DynamicParticle G4double eEnergy = initEnergy*MeV; G4ParticleMomentum eDirection(initX,initY,initZ); G4DynamicParticle dynamicPositron(positron,eDirection,eEnergy); dynamicPositron.DumpInfo(0); // Track G4ThreeVector aPosition(0.,0.,0.); G4double aTime = 0. ; G4Track* gTrack = new G4Track(&dynamicPositron,aTime,aPosition); G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition); gTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!! // Step G4Step* step = new G4Step(); step->SetTrack(gTrack); G4StepPoint* aPoint = new G4StepPoint(); aPoint->SetPosition(aPosition); aPoint->SetMaterial(material); aPoint->SetMaterialCutsCouple(theCouple); G4double safety = 10000.*cm; aPoint->SetSafety(safety); step->SetPreStepPoint(aPoint); // Check applicability if (! (positronProcess->IsApplicable(*positron))) { G4Exception("Not Applicable"); } else { G4cout<< "applicability OK" << G4endl; } positronProcess->BuildPhysicsTable(*positron); G4cout<< "table OK" << G4endl; // Test GetMeanFreePath() // E' protected! Il membro accessibile e' DumpMeanFreePath() G4Material* apttoMaterial ; G4String MaterialName ; G4double minArg = 100*eV,maxArg = 100*GeV, argStp; const G4int pntNum = 300; G4double Tkin[pntNum+1]; G4double meanFreePath=0. ; argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum; for(G4int d = 0; d < pntNum+1; d++) { Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp)); } G4double sti = 1.*mm; step->SetStepLength(sti); // for ( G4int J = 0 ; J < nMaterials ; J++ ) // { apttoMaterial = (*theMaterialTable)[materialId] ; MaterialName = apttoMaterial->GetName() ; logicalFrame->SetMaterial(apttoMaterial); gTrack->SetStep(step); G4eplusAnnihilation* positronStdProcess = (G4eplusAnnihilation*) positronProcess; G4PenelopeAnnihilation* positronPenProcess = (G4PenelopeAnnihilation*) positronProcess; for (G4int i=0 ; iGetMeanFreePath(*gTrack, sti, condition); } else if (processType == 2) { meanFreePath=positronPenProcess ->DumpMeanFreePath(*gTrack, sti, condition); } ntuple2->fill(ntuple2->findColumn("kinen"),Tkin[i]/MeV); ntuple2->fill(ntuple2->findColumn("mfp"),meanFreePath/cm); ntuple2->addRow(); // G4cout << meanFreePath/cm << G4endl; } G4cout << "Mean Free Path OK" << G4endl; // --------- Test the DoIt G4cout << "DoIt in " << material->GetName() << G4endl; dynamicPositron.SetKineticEnergy(eEnergy); G4int iter; initEnergy += 2.0*electron_mass_c2; for (iter=0; iterSetStepLength(1*micrometer); G4cout << "Iteration = " << iter << " - Step Length = " << step->GetStepLength()/mm << " mm " << G4endl; gTrack->SetStep(step); G4VParticleChange* dummy; G4cout << "eEnergy: " << eEnergy/MeV << " MeV" << G4endl; if (eEnergy>0.0) { dummy = positronProcess->PostStepDoIt(*gTrack, *step); G4cout << "Chiamo il Post Step " << G4endl; } else { dummy = positronProcess->AtRestDoIt(*gTrack,*step); G4cout << "Chiamo l'At Rest" << G4endl; } G4ParticleChange* particleChange = (G4ParticleChange*) dummy; // Secondaries physical quantities // Secondaries G4cout << " secondaries " << particleChange->GetNumberOfSecondaries() << G4endl; G4double px_1,py_1,pz_1,e_1,theta_1; G4double px_2,py_2,pz_2,e_2,theta_2; for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) { G4Track* finalParticle = particleChange->GetSecondary(i) ; G4double e = finalParticle->GetTotalEnergy(); G4double px = (finalParticle->GetMomentum()).x(); G4double py = (finalParticle->GetMomentum()).y(); G4double pz = (finalParticle->GetMomentum()).z(); G4double theta = (finalParticle->GetMomentum()).theta(); theta = theta/deg; //conversion in degrees if (e > initEnergy) { G4cout << "WARNING: eFinal > eInit " << G4endl; } G4String particleName = finalParticle->GetDefinition()->GetParticleName(); G4cout << "Initial energy " << eEnergy/MeV << G4endl; G4cout << "==== Final " << particleName << " " << "energy: " << e/MeV << " MeV, " << "(px,py,pz): (" << px/MeV << "," << py/MeV << "," << pz/MeV << ") MeV " << G4endl; if (particleName == "gamma") { if (i == 0) { px_1=px; py_1=py; pz_1=pz; e_1=e; theta_1=theta; } else if (i == 1) { px_2 = px; py_2 = py; pz_2 = pz; e_2 = e; theta_2 = theta; } else { G4Exception("There are more than 3 gammas?!?"); } } delete particleChange->GetSecondary(i); } // Fill the secondaries ntuple // Normalize all to the energy of primary // for gammas initEnergy=initP ntuple1->fill(ntuple1->findColumn("eprimary"),eEnergy); ntuple1->fill(ntuple1->findColumn("px_1"),px_1/initEnergy); ntuple1->fill(ntuple1->findColumn("py_1"),py_1/initEnergy); ntuple1->fill(ntuple1->findColumn("pz_1"),pz_1/initEnergy); ntuple1->fill(ntuple1->findColumn("e_1"),e_1/initEnergy); ntuple1->fill(ntuple1->findColumn("theta_1"),theta_1); ntuple1->fill(ntuple1->findColumn("px_2"),px_2/initEnergy); ntuple1->fill(ntuple1->findColumn("py_2"),py_2/initEnergy); ntuple1->fill(ntuple1->findColumn("pz_2"),pz_2/initEnergy); ntuple1->fill(ntuple1->findColumn("e_2"),e_2/initEnergy); ntuple1->fill(ntuple1->findColumn("theta_2"),theta_2); ntuple1->addRow(); particleChange->Clear(); } G4cout << "Iteration number: " << iter << G4endl; G4cout << "Committing.............." << G4endl; tree->commit(); G4cout << "Closing the tree........" << G4endl; tree->close(); delete step; G4cout << "END OF THE MAIN PROGRAM" << G4endl; return 0; }