source: trunk/source/processes/electromagnetic/lowenergy/test/G4PenelopeBremsstrahlungTest.cc @ 1199

Last change on this file since 1199 was 1199, checked in by garnier, 15 years ago

nvx fichiers dans CVS

File size: 21.1 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4PenelopeBremsstrahlungTest.cc,v 1.9 2006/06/29 19:44:16 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// -------------------------------------------------------------------
31//      GEANT 4 class file --- Copyright CERN 1998
32//      CERN Geneva Switzerland
33//
34//
35//      File name:     G4PenelopeBremsstrahlungTest.cc
36//
37//      Author:        Francesco Longo
38//
39//      Creation date: 04 january 2001
40//
41//      Modifications: Luciano Pandola  (27 november 2002)
42//                     Adapted in order to test G4PenelopeBremsstrahlung
43//                     Minor modification in n-tuple filling
44//                     Updated analysis to AIDA 3.0
45//
46// -------------------------------------------------------------------
47
48#include "globals.hh"
49#include "G4ios.hh"
50#include <fstream>
51#include <iomanip>
52
53#include "G4ParticleDefinition.hh"
54#include "G4ParticleTypes.hh"
55#include "G4ParticleTable.hh"
56#include "G4Material.hh"
57#include "G4MaterialTable.hh"
58#include "G4VContinuousDiscreteProcess.hh"
59#include "G4VProcess.hh"
60#include "G4ProcessManager.hh"
61#include "G4RunManager.hh"
62
63#include "G4PenelopeBremsstrahlung.hh"
64#include "G4LowEnergyBremsstrahlung.hh"
65#include "G4eBremsstrahlung.hh"
66
67#include "G4EnergyLossTables.hh"
68#include "G4VParticleChange.hh"
69#include "G4ParticleChange.hh"
70#include "G4DynamicParticle.hh"
71#include "G4ForceCondition.hh"
72
73#include "G4LowEnergyBremsstrahlung.hh"
74#include "G4LowEnergyIonisation.hh"
75#include "G4eIonisation.hh"
76#include "G4MultipleScattering.hh"
77#include "G4eIonisation.hh"
78#include "G4eBremsstrahlung.hh"
79#include "G4eplusAnnihilation.hh"
80
81//#include "G4ComptonScattering.hh"
82//#include "G4PhotoElectricEffect.hh"
83
84#include "G4Electron.hh"
85#include "G4Positron.hh"
86#include "G4Gamma.hh"
87
88#include "G4GRSVolume.hh"
89#include "G4Box.hh"
90#include "G4PVPlacement.hh"
91#include "G4Step.hh"
92#include "G4ProductionCutsTable.hh"
93#include "G4MaterialCutsCouple.hh"
94
95#include "G4UnitsTable.hh"
96#include "AIDA/IManagedObject.h"
97
98#include <memory>
99#include "AIDA/IAnalysisFactory.h"
100#include "AIDA/ITreeFactory.h"
101#include "AIDA/ITree.h"
102#include "AIDA/IHistogramFactory.h"
103#include "AIDA/IHistogram1D.h"
104#include "AIDA/IHistogram2D.h"
105#include "AIDA/IHistogram3D.h"
106#include "AIDA/ITupleFactory.h"
107#include "AIDA/ITuple.h"
108
109
110int main()
111{
112
113  // Setup
114
115  G4int nIterations = 100000;
116  G4int materialId = 3;
117  G4int test=0;
118  G4int tPart=1;
119  //G4cout.setf(std::ios::scientific,std::ios::floatfield );
120
121  // -------------------------------------------------------------------
122
123  // ---- HBOOK initialization
124
125  std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() );
126  std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory());
127  std::auto_ptr< AIDA::ITree > tree (tf->create("pen_br_test.hbook","hbook",false,true));
128  G4cout << "Tree store: " << tree->storeName() << G4endl;
129  std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree));
130  std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree));
131 
132  // ---- primary ntuple ------
133  AIDA::ITuple* ntuple1 = tpf->create("1","Primary Ntuple","double eprimary,energyf,de,dedx,pxch,pych,pzch,pch,thetach");
134 
135  // ---- secondary ntuple ------
136  AIDA::ITuple* ntuple2 = tpf->create("2","Secondary Ntuple","double eprimary,px_ga,py_ga,pz_ga,p_ga,e_ga,theta_ga");
137
138  // ---- table ntuple ------
139  AIDA::ITuple* ntuple3 = tpf->create("3","Mean Free Path Ntuple","double kinen,mfp");
140
141  //--------- Materials definition ---------
142
143  G4Material* Si  = new G4Material("Silicon",   14., 28.055*g/mole, 2.33*g/cm3);
144  G4Material* Fe  = new G4Material("Iron",      26., 55.85*g/mole, 7.87*g/cm3);
145  G4Material* Cu  = new G4Material("Copper",    29., 63.55*g/mole, 8.96*g/cm3);
146  G4Material*  W  = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
147  G4Material* Pb  = new G4Material("Lead",      82., 207.19*g/mole, 11.35*g/cm3);
148  G4Material*  U  = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
149  G4Material* Al  = new G4Material("Aluminum",13.,26.98*g/mole,2.7*g/cm3);
150  G4Material* Au  = new G4Material("Gold"    ,79.,196.97*g/mole,19.3*g/cm3);
151
152  G4Element*   H  = new G4Element ("Hydrogen", "H", 1. ,  1.01*g/mole);
153  G4Element*   O  = new G4Element ("Oxygen"  , "O", 8. , 16.00*g/mole);
154  G4Element*   C  = new G4Element ("Carbon"  , "C", 6. , 12.00*g/mole);
155  G4Element*  Cs  = new G4Element ("Cesium"  , "Cs", 55. , 132.905*g/mole);
156  G4Element*   I  = new G4Element ("Iodine"  , "I", 53. , 126.9044*g/mole);
157
158  G4Material*  maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
159
160  G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
161  water->AddElement(H,2);
162  water->AddElement(O,1);
163
164  G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
165  ethane->AddElement(H,6);
166  ethane->AddElement(C,2);
167 
168  G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
169  csi->AddElement(Cs,1);
170  csi->AddElement(I,1);
171
172
173  // Interactive set-up
174  G4cout << "Electrons [1] or Positrons [2] ?" << G4endl;
175  G4cin >> tPart;
176  if ( !(tPart == 1 || tPart == 2)) G4Exception("Wrong input");
177
178
179  G4cout << "Test AlongStepDoIt [1] or PostStepDoIt [2] ?" << G4endl;
180  G4cin >> test;
181  if ( !(test == 1 || test == 2)) G4Exception("Wrong input");
182
183
184
185  G4cout << "How many interactions? " << G4endl;
186  G4cin >> nIterations;
187
188  if (nIterations <= 0) G4Exception("Wrong input");
189
190  G4double initEnergy = 1*MeV; 
191  G4double initX = 0.; 
192  G4double initY = 0.; 
193  G4double initZ = 1.;
194 
195  G4cout << "Enter the initial particle energy E (MeV)" << G4endl; 
196  G4cin >> initEnergy ;
197
198
199  initEnergy = initEnergy*MeV;
200 
201  if (initEnergy  <= 0.) G4Exception("Wrong input");
202
203  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
204
205  G4int nMaterials = G4Material::GetNumberOfMaterials();
206
207  G4cout << "Available materials are: " << G4endl;
208  for (G4int mat = 0; mat < nMaterials; mat++)
209    {
210      G4cout << mat << ") "
211             << (*theMaterialTable)[mat]->GetName()
212             << G4endl;
213    }
214 
215  G4cout << "Which material? " << G4endl;
216  G4cin >> materialId;
217 
218  G4Material* material = (*theMaterialTable)[materialId] ;
219
220  G4cout << "The selected material is: "
221         << material->GetName()
222         << G4endl;
223 
224  G4double dimX = 1*mm;
225  G4double dimY = 1*mm;
226  G4double dimZ = 1*mm;
227 
228  // Geometry
229 
230  G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
231 
232  G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
233                                                      (*theMaterialTable)[materialId],
234                                                      "LFrame", 0, 0, 0);
235  logicalFrame->SetMaterial(material); 
236 
237  G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
238                                                   "PFrame",logicalFrame,0,false,0);
239  G4RunManager* rm = new G4RunManager();
240  G4cout << "World is defined " << G4endl;
241  rm->GeometryHasBeenModified();
242  rm->DefineWorldVolume(physicalFrame);
243  // Particle definitions
244 
245  G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
246  G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
247  G4ParticleDefinition* positron = G4Positron::PositronDefinition();
248 
249 
250  G4ParticleDefinition* realpt = G4Electron::ElectronDefinition();
251
252  if (tPart == 2)
253    {
254      realpt = G4Positron::PositronDefinition();
255    }
256 
257  G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable();
258  G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts();
259  G4double cutG=1*micrometer;
260  G4double cutE=1*micrometer;
261  cuts->SetProductionCut(cutG, 0); //gammas
262  cuts->SetProductionCut(cutE, 1); //electrons
263  cuts->SetProductionCut(cutE, 2); //positrons
264  G4cout << "Cuts are defined " << G4endl;
265 
266  //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
267  //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
268  //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
269 
270  cutsTable->UpdateCoupleTable();
271  //cutsTable->DumpCouples();
272  const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts);
273
274  // Processes
275 
276 
277  G4int processType;
278  G4cout << "Standard [1] or LowEnergy[2] or Penelope [3] Bremsstrahlung?" << G4endl;
279  G4cin >> processType;
280  if ( !(processType == 1 || processType == 2 || processType == 3))
281    {
282      G4Exception("Wrong input");
283    }
284
285  G4VContinuousDiscreteProcess* bremProcess;
286
287  if (processType == 1)
288    {
289      bremProcess = new G4eBremsstrahlung();
290      G4cout << "The selected model is Standard" << G4endl;
291    }
292  else if (processType == 2)
293    {
294      bremProcess = new G4LowEnergyBremsstrahlung();
295      G4cout << "The selected model is Low Energy" << G4endl;
296    }
297  else if (processType == 3)
298    {
299     
300      bremProcess = new G4PenelopeBremsstrahlung();
301      G4cout << "The selected model is Penelope" << G4endl;
302    }
303 
304  //----------------
305  // process manager 
306  //----------------
307
308  // electron or positron
309 
310 
311  G4ProcessManager* ProcessManager = new G4ProcessManager(realpt);
312  realpt->SetProcessManager(ProcessManager);
313  ProcessManager->AddProcess(bremProcess);
314  G4ForceCondition* condition; 
315
316 
317  //--------------
318  // set ordering   
319  //--------------
320
321
322//   eProcessManager->
323//     SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
324//   eProcessManager->
325//     SetProcessOrdering(theeminusIonisation,         idxAlongStep,2);
326     
327//   eProcessManager->
328//     SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
329//   eProcessManager->
330//     SetProcessOrdering(theeminusIonisation,         idxPostStep,2);
331//   eProcessManager->
332//     SetProcessOrdering(theeminusBremsstrahlung,     idxPostStep,3);
333
334
335
336  // pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
337//   pProcessManager->
338//     SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
339//   pProcessManager->
340//     SetProcessOrdering(theeplusIonisation,         idxAlongStep,2);
341
342//   pProcessManager->
343//     SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
344//   pProcessManager->
345//     SetProcessOrdering(theeplusIonisation,         idxPostStep,2);
346//   pProcessManager->
347//     SetProcessOrdering(theeplusBremsstrahlung,     idxPostStep,3);
348//   pProcessManager->
349//     SetProcessOrdering(theeplusAnnihilation,       idxPostStep,4);
350 
351  // G4LowEnergyIonisation IonisationProcess;
352  // eProcessManager->AddProcess(&IonisationProcess);
353  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1);
354  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep, 1);
355 
356  // G4LowEnergyBremsstrahlung BremstrahlungProcess;
357  // eProcessManager->AddProcess(&BremstrahlungProcess);
358  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1);
359  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep, 1);
360 
361  // G4eIonisation IonisationPlusProcess;
362  // pPositronProcessManager->AddProcess(&IonisationPlusProcess);
363  // pProcessManager->
364  //        SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1);
365  // pProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1);
366
367
368
369  // Create a DynamicParticle 
370 
371  G4double eEnergy = initEnergy*MeV;
372  G4ParticleMomentum eDirection(initX,initY,initZ);
373  //eEnergy is the KINETIK energy
374  G4DynamicParticle dynamicPrimary(realpt,eDirection,eEnergy);
375
376  dynamicPrimary.DumpInfo(0);
377 
378  // Track
379
380  G4ThreeVector aPosition(0.,0.,0.);
381  G4double aTime = 0. ;
382 
383  G4Track* eTrack = new G4Track(&dynamicPrimary,aTime,aPosition);
384  G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);   
385  eTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!!
386
387
388  // Step
389
390  G4Step* step = new G4Step(); 
391  step->SetTrack(eTrack);
392
393  G4StepPoint* aPoint = new G4StepPoint();
394  aPoint->SetPosition(aPosition);
395  aPoint->SetMaterial(material);
396  aPoint->SetMaterialCutsCouple(theCouple);
397  G4double safety = 10000.*cm;
398  aPoint->SetSafety(safety);
399  step->SetPreStepPoint(aPoint);
400 
401  // Check applicability
402 
403  if (! (bremProcess->IsApplicable(*realpt)))
404    {
405      G4Exception("Not Applicable");
406    }
407  else 
408    {
409      G4cout<< "applicability OK" << G4endl;
410    }
411 
412  // Initialize the physics tables (in which material?)
413  bremProcess->BuildPhysicsTable(*realpt);
414
415  G4cout<< "table OK" << G4endl;
416 
417  // Test GetMeanFreePath()
418  // E' protected! Il membro accessibile e' DumpMeanFreePath()
419 
420  G4Material* apttoMaterial ;
421  G4String MaterialName ;
422 
423  G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
424  const G4int pntNum = 300;
425  G4double Tkin[pntNum+1];
426  G4double meanFreePath=0. ;
427
428  argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
429 
430  for(G4int d = 0; d < pntNum+1; d++)
431    { 
432      Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
433    }
434 
435  G4double sti = 1.*mm;
436  step->SetStepLength(sti);
437 
438  //  for ( G4int J = 0 ; J < nMaterials ; J++ )
439  //  {
440  apttoMaterial = (*theMaterialTable)[materialId] ;
441  MaterialName  = apttoMaterial->GetName() ;
442  logicalFrame->SetMaterial(apttoMaterial); 
443 
444  eTrack->SetStep(step);
445
446  G4PenelopeBremsstrahlung* LowEProcess =
447    (G4PenelopeBremsstrahlung*) bremProcess;
448  G4LowEnergyBremsstrahlung* LowEProcess2 =
449    (G4LowEnergyBremsstrahlung*) bremProcess;
450  G4eBremsstrahlung* StdProcess =
451    (G4eBremsstrahlung*) bremProcess;
452 
453 
454  for (G4int i=0 ; i<pntNum; i++)
455    {
456      dynamicPrimary.SetKineticEnergy(Tkin[i]);
457      if (processType == 3)
458        {
459          //meanFreePath=LowEProcess
460          // ->DumpMeanFreePath(*eTrack, sti, condition);
461        }
462      else if (processType == 2)
463        {
464          //meanFreePath=electronLowEProcess2
465          // ->DumpMeanFreePath(*eTrack, sti, condition);
466         
467        }
468      else if (processType == 1)
469        { 
470          //meanFreePath=StdProcess
471          //  ->GetMeanFreePath(*eTrack, sti, condition);
472        }
473
474      ntuple3->fill(ntuple3->findColumn("kinen"),std::log10(Tkin[i]));
475      ntuple3->fill(ntuple3->findColumn("mfp"),meanFreePath/cm);
476      ntuple3->addRow();
477
478   
479      //G4cout << Tkin[i]/MeV << " " <<  meanFreePath/cm << G4endl;
480
481    }
482  G4cout << "Mean Free Path OK" << G4endl;
483 
484  // --------- Test the DoIt
485 
486  G4cout << "DoIt in " << material->GetName() << G4endl;
487
488
489  dynamicPrimary.SetKineticEnergy(eEnergy);
490  G4int iter;
491  for (iter=0; iter<nIterations; iter++)
492    {
493     
494      step->SetStepLength(1*micrometer);
495     
496      G4cout  <<  "Iteration = "  <<  iter
497              << "  -  Step Length = " 
498              << step->GetStepLength()/mm << " mm "
499              << G4endl;
500     
501   
502      eTrack->SetStep(step); 
503     
504 
505      //      G4cout  <<  "Iteration = "  <<  iter
506      //              << "  -  Step Length = "
507      //      << step->GetStepLength()/mm << " mm "
508      //      << G4endl;
509     
510      //G4cout << eTrack->GetStep()->GetStepLength()/mm
511      //     << G4endl;
512     
513      //G4cout << "Prima" << G4endl;
514      G4VParticleChange* dummy;
515      if (test==1) dummy = bremProcess->AlongStepDoIt(*eTrack, *step);
516      if (test==2) dummy = bremProcess->PostStepDoIt(*eTrack,*step);
517      //G4cout << "Dopo" << G4endl;
518
519      G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
520     
521      // Primary physical quantities
522     
523      G4double energyChange = particleChange->GetEnergy();
524      G4double dedx = initEnergy - energyChange ;
525      G4double dedxNow = dedx / (step->GetStepLength());
526     
527      G4ThreeVector eChange = 
528        particleChange->CalcMomentum(energyChange,
529                                     (*particleChange->GetMomentumDirection()),
530                                     particleChange->GetMass());
531     
532      G4double pxChange  = eChange.x();
533      G4double pyChange  = eChange.y();
534      G4double pzChange  = eChange.z();
535      G4double pChange   = 
536        std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
537     
538      G4double xChange = particleChange->GetPosition()->x();
539      G4double yChange = particleChange->GetPosition()->y();
540      G4double zChange = particleChange->GetPosition()->z();
541
542      G4double thetaChange = particleChange->GetMomentumDirection()->theta();
543      thetaChange = thetaChange/deg; //conversion in degrees
544     
545      G4cout << "---- Primary after the step ---- " << G4endl;
546 
547      //      G4cout << "Position (x,y,z) = "
548      //             << xChange << "  "
549      //             << yChange << "   "
550      //             << zChange << "   "
551      //             << G4endl;
552
553      G4cout << "---- Energy: " << energyChange/MeV << " MeV,  " 
554             << "(px,py,pz): ("
555             << pxChange/MeV << ","
556             << pyChange/MeV << "," 
557             << pzChange/MeV << ") MeV"
558             << G4endl;
559     
560      G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
561      //      G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
562 
563       ntuple1->fill(ntuple1->findColumn("eprimary"),initEnergy/MeV);
564       ntuple1->fill(ntuple1->findColumn("energyf"),energyChange/MeV);
565       ntuple1->fill(ntuple1->findColumn("de"),dedx/MeV);
566       ntuple1->fill(ntuple1->findColumn("dedx"),dedxNow/(MeV/cm));
567       ntuple1->fill(ntuple1->findColumn("pxch"),pxChange/MeV);
568       ntuple1->fill(ntuple1->findColumn("pych"),pyChange/MeV);
569       ntuple1->fill(ntuple1->findColumn("pzch"),pzChange/MeV);
570       ntuple1->fill(ntuple1->findColumn("pch"),pChange/MeV);
571       ntuple1->fill(ntuple1->findColumn("thetach"),thetaChange);
572       ntuple1->addRow();
573
574      // Secondaries physical quantities
575           
576      // Secondaries
577      G4cout << " secondaries " << 
578        particleChange->GetNumberOfSecondaries() << G4endl;
579      G4double px_ga,py_ga,pz_ga,p_ga,e_ga,theta_ga,eKin_ga;
580     
581      for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) 
582        {
583          // The following two items should be filled per event, not
584          // per secondary; filled here just for convenience, to avoid
585          // complicated logic to dump ntuple when there are no secondaries
586         
587          G4Track* finalParticle = particleChange->GetSecondary(i) ;
588         
589          G4double e    = finalParticle->GetTotalEnergy();
590          G4double eKin = finalParticle->GetKineticEnergy();
591          G4double px   = (finalParticle->GetMomentum()).x();
592          G4double py   = (finalParticle->GetMomentum()).y();
593          G4double pz   = (finalParticle->GetMomentum()).z();
594          G4double theta   = (finalParticle->GetMomentum()).theta();
595          G4double p   = std::sqrt(px*px+py*py+pz*pz);
596          theta = theta/deg; //conversion in degrees
597          if (e > initEnergy)
598            {
599              G4cout << "WARNING: eFinal > eInit " << G4endl;
600              //             << e
601              //                     << " > " initEnergy
602             
603            }
604         
605          G4String particleName = 
606            finalParticle->GetDefinition()->GetParticleName();
607          G4cout  << "==== Final " 
608                  <<  particleName  <<  " " 
609                  << "energy: " <<  e/MeV  <<  " MeV,  " 
610                  << "eKin: " <<  eKin/MeV  <<  " MeV, " 
611                  << "(px,py,pz): ("
612                  <<  px/MeV  <<  "," 
613                  <<  py/MeV  <<  ","
614                  <<  pz/MeV  << ") MeV "
615                  <<  G4endl;   
616         
617          G4int partType;
618          if (particleName == "e-") {
619            partType = 1;
620          }
621          else if (particleName == "gamma") 
622            {
623              partType = 2;
624              px_ga=px;
625              py_ga=py;
626              pz_ga=pz;
627              p_ga=p;
628              e_ga=e;
629              theta_ga=theta;
630            }
631          else if (particleName == "e+") partType = 3;
632         
633
634          delete particleChange->GetSecondary(i);
635        }
636     
637          // Fill the secondaries ntuple
638
639      // Normalize all to the energy of primary
640      // for gammas initEnergy=initP
641      ntuple2->fill(ntuple2->findColumn("eprimary"),initEnergy/MeV);
642      ntuple2->fill(ntuple2->findColumn("px_ga"),px_ga/MeV);
643      ntuple2->fill(ntuple2->findColumn("py_ga"),py_ga/MeV);
644      ntuple2->fill(ntuple2->findColumn("pz_ga"),pz_ga/MeV);
645      ntuple2->fill(ntuple2->findColumn("p_ga"),p_ga/MeV);
646      ntuple2->fill(ntuple2->findColumn("e_ga"),e_ga/MeV);
647      ntuple2->fill(ntuple2->findColumn("theta_ga"),theta_ga);
648      ntuple2->addRow();
649      particleChange->Clear();
650     
651    } 
652 
653 
654  G4cout  << "Iteration number: "  <<  iter << G4endl;
655 
656  G4cout << "Committing.............." << G4endl;
657  tree->commit();
658  G4cout << "Closing the tree........" << G4endl;
659  tree->close();
660 
661  delete step;
662
663
664  G4cout << "END OF THE MAIN PROGRAM" << G4endl;
665  return 0;
666}
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
Note: See TracBrowser for help on using the repository browser.