source: trunk/source/processes/electromagnetic/lowenergy/test/G4PenelopeGammaConversionTest.cc @ 1228

Last change on this file since 1228 was 1199, checked in by garnier, 15 years ago

nvx fichiers dans CVS

File size: 23.2 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4PenelopeGammaConversionTest.cc,v 1.8 2006/06/29 19:44:20 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// -------------------------------------------------------------------
31//      GEANT 4 class file --- Copyright CERN 1998
32//      CERN Geneva Switzerland
33//
34//
35//      File name:     G4PenelopeGammaConversionTest.cc
36//
37//      Author:        Francesco Longo
38//
39//      Creation date: 04 january 2001
40//
41//      Modifications: Luciano Pandola  (27 november 2002)
42//                     Adapted in order to test G4PenelopeGammaConversion
43//                     Minor modification in n-tuple filling
44//                     Updated analysis to AIDA 3.0
45//
46// -------------------------------------------------------------------
47
48#include "globals.hh"
49#include "G4ios.hh"
50#include <fstream>
51#include <iomanip>
52
53#include "G4ParticleDefinition.hh"
54#include "G4ParticleTypes.hh"
55#include "G4ParticleTable.hh"
56#include "G4Material.hh"
57#include "G4MaterialTable.hh"
58#include "G4VDiscreteProcess.hh"
59#include "G4VProcess.hh"
60#include "G4ProcessManager.hh"
61
62#include "G4PenelopeGammaConversion.hh"
63#include "G4LowEnergyGammaConversion.hh"
64#include "G4GammaConversion.hh"
65
66#include "G4EnergyLossTables.hh"
67#include "G4VParticleChange.hh"
68#include "G4ParticleChange.hh"
69#include "G4DynamicParticle.hh"
70#include "G4ForceCondition.hh"
71
72#include "G4LowEnergyBremsstrahlung.hh"
73#include "G4LowEnergyIonisation.hh"
74#include "G4eIonisation.hh"
75#include "G4MultipleScattering.hh"
76#include "G4eIonisation.hh"
77#include "G4eBremsstrahlung.hh"
78#include "G4eplusAnnihilation.hh"
79
80#include "G4ComptonScattering.hh"
81#include "G4PhotoElectricEffect.hh"
82
83#include "G4RunManager.hh"
84
85#include "G4Electron.hh"
86#include "G4Positron.hh"
87#include "G4Gamma.hh"
88
89#include "G4GRSVolume.hh"
90#include "G4Box.hh"
91#include "G4PVPlacement.hh"
92#include "G4Step.hh"
93#include "G4ProductionCutsTable.hh"
94#include "G4MaterialCutsCouple.hh"
95
96#include "G4UnitsTable.hh"
97#include "AIDA/IManagedObject.h"
98
99#include <memory>
100#include "AIDA/IAnalysisFactory.h"
101#include "AIDA/ITreeFactory.h"
102#include "AIDA/ITree.h"
103#include "AIDA/IHistogramFactory.h"
104#include "AIDA/IHistogram1D.h"
105#include "AIDA/IHistogram2D.h"
106#include "AIDA/IHistogram3D.h"
107#include "AIDA/ITupleFactory.h"
108#include "AIDA/ITuple.h"
109
110
111G4int main()
112{
113
114  // Setup
115
116  G4int nIterations = 100000;
117  G4int materialId = 3;
118
119  //G4cout.setf(std::ios::scientific,std::ios::floatfield );
120
121  // -------------------------------------------------------------------
122
123  // ---- HBOOK initialization
124
125  std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() );
126  std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory());
127  std::auto_ptr< AIDA::ITree > tree (tf->create("Pen_pp_test.hbook","hbook",false,true));
128  G4cout << "Tree store: " << tree->storeName() << G4endl;
129  std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree));
130  std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree));
131 
132  // ---- primary ntuple ------
133  //AIDA::ITuple* ntuple1 = tpf->create("1","Primary Ntuple","double eprimary,energyf,de,dedx,pxch,pych,pzch,pch,thetach");
134 
135  // ---- secondary ntuple ------
136  AIDA::ITuple* ntuple2 = tpf->create("2","Secondary Ntuple","double eprimary,px_el,py_el,pz_el,p_el,e_el,theta_el,ekin_el,px_po,py_po,pz_po,p_po,e_po,theta_po,ekin_po");
137
138  // ---- table ntuple ------
139  AIDA::ITuple* ntuple3 = tpf->create("3","Mean Free Path Ntuple","double kinen,mfp");
140 
141  // ---- secondaries histos ----
142  AIDA::IHistogram1D* hEKin;
143  hEKin = hf->createHistogram1D("10","Kinetic Energy", 100,0.,10.);
144 
145  AIDA::IHistogram1D* hP;
146  hP = hf->createHistogram1D("20","Momentum", 100,0.,10.);
147 
148  AIDA::IHistogram1D* hNSec;
149  hNSec = hf->createHistogram1D("30","Number of secondaries", 40,0.,40.);
150 
151  AIDA::IHistogram1D* hDebug;
152  hDebug = hf->createHistogram1D("40","Debug", 100,0.,200.);
153 
154
155  //--------- Materials definition ---------
156
157  G4Material* Si  = new G4Material("Silicon",   14., 28.055*g/mole, 2.33*g/cm3);
158  G4Material* Fe  = new G4Material("Iron",      26., 55.85*g/mole, 7.87*g/cm3);
159  G4Material* Cu  = new G4Material("Copper",    29., 63.55*g/mole, 8.96*g/cm3);
160  G4Material*  W  = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
161  G4Material* Pb  = new G4Material("Lead",      82., 207.19*g/mole, 11.35*g/cm3);
162  G4Material*  U  = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
163
164  G4Element*   H  = new G4Element ("Hydrogen", "H", 1. ,  1.01*g/mole);
165  G4Element*   O  = new G4Element ("Oxygen"  , "O", 8. , 16.00*g/mole);
166  G4Element*   C  = new G4Element ("Carbon"  , "C", 6. , 12.00*g/mole);
167  G4Element*  Cs  = new G4Element ("Cesium"  , "Cs", 55. , 132.905*g/mole);
168  G4Element*   I  = new G4Element ("Iodine"  , "I", 53. , 126.9044*g/mole);
169
170  G4Material*  maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
171
172  G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
173  water->AddElement(H,2);
174  water->AddElement(O,1);
175
176  G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
177  ethane->AddElement(H,6);
178  ethane->AddElement(C,2);
179 
180  G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
181  csi->AddElement(Cs,1);
182  csi->AddElement(I,1);
183
184
185  // Interactive set-up
186
187  G4cout << "How many interactions? " << G4endl;
188  G4cin >> nIterations;
189
190  if (nIterations <= 0) G4Exception("Wrong input");
191
192  G4double initEnergy = 1*MeV; 
193  G4double initX = 0.; 
194  G4double initY = 0.; 
195  G4double initZ = 1.;
196 
197  G4cout << "Enter the initial particle energy E (MeV)" << G4endl; 
198  G4cin >> initEnergy ;
199
200  initEnergy = initEnergy*MeV;
201 
202  if (initEnergy  <= 0.) G4Exception("Wrong input");
203
204  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
205
206  G4int nMaterials = G4Material::GetNumberOfMaterials();
207
208  G4cout << "Available materials are: " << G4endl;
209  for (G4int mat = 0; mat < nMaterials; mat++)
210    {
211      G4cout << mat << ") "
212             << (*theMaterialTable)[mat]->GetName()
213             << G4endl;
214    }
215 
216  G4cout << "Which material? " << G4endl;
217  G4cin >> materialId;
218 
219  G4Material* material = (*theMaterialTable)[materialId] ;
220
221  G4cout << "The selected material is: "
222         << material->GetName()
223         << G4endl;
224 
225  G4double dimX = 1*mm;
226  G4double dimY = 1*mm;
227  G4double dimZ = 1*mm;
228 
229  // Geometry
230 
231  G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
232 
233  G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
234                                                      (*theMaterialTable)[materialId],
235                                                      "LFrame", 0, 0, 0);
236  logicalFrame->SetMaterial(material); 
237 
238  G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
239                                                   "PFrame",logicalFrame,0,false,0);
240
241  G4RunManager* rm = new G4RunManager();
242  G4cout << "World is defined " << G4endl;
243  rm->GeometryHasBeenModified();
244  rm->DefineWorldVolume(physicalFrame);
245
246  // Particle definitions
247 
248  G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
249  G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
250  G4ParticleDefinition* positron = G4Positron::PositronDefinition();
251 
252  G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable();
253  G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts();
254  G4double cutG=1*micrometer;
255  G4double cutE=1*micrometer;
256  cuts->SetProductionCut(cutG, 0); //gammas
257  cuts->SetProductionCut(cutE, 1); //electrons
258  cuts->SetProductionCut(cutE, 2); //positrons
259  G4cout << "Cuts are defined " << G4endl;
260
261  //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
262  //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
263  //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
264
265  cutsTable->UpdateCoupleTable();
266  //cutsTable->DumpCouples();
267  const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts);
268  G4int indx=theCouple->GetIndex();
269 
270  // Processes
271 
272 
273  G4int processType;
274  G4cout << "Standard [1] or LowEnergy[2] or Penelope [3] Gamma Conversion?" << G4endl;
275  G4cin >> processType;
276  if ( !(processType == 1 || processType == 2 || processType == 3))
277    {
278      G4Exception("Wrong input");
279    }
280
281  G4VDiscreteProcess* gammaProcess;
282
283  if (processType == 1)
284    {
285      gammaProcess = new G4GammaConversion();
286      G4cout << "The selected model is Standard" << G4endl;
287    }
288  else if (processType == 2)
289    {
290      gammaProcess = new G4LowEnergyGammaConversion();
291      G4cout << "The selected model is Low Energy" << G4endl;
292    }
293  else if (processType == 3)
294    {
295     
296      gammaProcess = new G4PenelopeGammaConversion();
297      G4cout << "The selected model is Penelope" << G4endl;
298    }
299 
300  G4VProcess* theeminusMultipleScattering = new G4MultipleScattering();
301  G4VProcess* theeminusIonisation         = new G4eIonisation();
302  G4VProcess* theeminusBremsstrahlung     = new G4eBremsstrahlung();
303  G4VProcess* theeplusMultipleScattering  = new G4MultipleScattering();
304  G4VProcess* theeplusIonisation          = new G4eIonisation();
305  G4VProcess* theeplusBremsstrahlung      = new G4eBremsstrahlung();
306  G4VProcess* theeplusAnnihilation        = new G4eplusAnnihilation();
307
308  //----------------
309  // process manager 
310  //----------------
311
312  // gamma
313 
314  G4ProcessManager* gProcessManager = new G4ProcessManager(gamma);
315  gamma->SetProcessManager(gProcessManager);
316  gProcessManager->AddDiscreteProcess(gammaProcess);
317  G4ForceCondition* condition;
318
319  //electron
320 
321  G4ProcessManager* eProcessManager = new G4ProcessManager(electron);
322  electron->SetProcessManager(eProcessManager);
323  eProcessManager->AddProcess(theeminusMultipleScattering);
324  eProcessManager->AddProcess(theeminusIonisation);
325  eProcessManager->AddProcess(theeminusBremsstrahlung);
326 
327  //positron
328 
329  G4ProcessManager* pProcessManager = new G4ProcessManager(positron);
330  positron->SetProcessManager(pProcessManager);
331  pProcessManager->AddProcess(theeplusMultipleScattering);
332  pProcessManager->AddProcess(theeplusIonisation);
333  pProcessManager->AddProcess(theeplusBremsstrahlung);
334  pProcessManager->AddProcess(theeplusAnnihilation);
335 
336  //--------------
337  // set ordering   
338  //--------------
339
340
341  eProcessManager->
342    SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
343  eProcessManager->
344    SetProcessOrdering(theeminusIonisation,         idxAlongStep,2);
345     
346  eProcessManager->
347    SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
348  eProcessManager->
349    SetProcessOrdering(theeminusIonisation,         idxPostStep,2);
350  eProcessManager->
351    SetProcessOrdering(theeminusBremsstrahlung,     idxPostStep,3);
352
353
354
355  pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
356  pProcessManager->
357    SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
358  pProcessManager->
359    SetProcessOrdering(theeplusIonisation,         idxAlongStep,2);
360
361  pProcessManager->
362    SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
363  pProcessManager->
364    SetProcessOrdering(theeplusIonisation,         idxPostStep,2);
365  pProcessManager->
366    SetProcessOrdering(theeplusBremsstrahlung,     idxPostStep,3);
367  pProcessManager->
368    SetProcessOrdering(theeplusAnnihilation,       idxPostStep,4);
369 
370  // G4LowEnergyIonisation IonisationProcess;
371  // eProcessManager->AddProcess(&IonisationProcess);
372  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1);
373  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep, 1);
374 
375  // G4LowEnergyBremsstrahlung BremstrahlungProcess;
376  // eProcessManager->AddProcess(&BremstrahlungProcess);
377  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1);
378  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep, 1);
379 
380  // G4eIonisation IonisationPlusProcess;
381  // pPositronProcessManager->AddProcess(&IonisationPlusProcess);
382  // pProcessManager->
383  //        SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1);
384  // pProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1);
385
386
387
388  // Create a DynamicParticle 
389 
390  G4double eEnergy = initEnergy*MeV;
391  G4ParticleMomentum eDirection(initX,initY,initZ);
392  G4DynamicParticle dynamicGamma(G4Gamma::Gamma(),eDirection,eEnergy);
393
394  dynamicGamma.DumpInfo(0);
395 
396  // Track
397
398  G4ThreeVector aPosition(0.,0.,0.);
399  G4double aTime = 0. ;
400 
401  G4Track* gTrack = new G4Track(&dynamicGamma,aTime,aPosition);
402
403  G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);   
404  gTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!!
405
406
407  // Step
408
409  G4Step* step = new G4Step(); 
410  step->SetTrack(gTrack);
411
412  G4StepPoint* aPoint = new G4StepPoint();
413  aPoint->SetPosition(aPosition);
414  aPoint->SetMaterial(material);
415  aPoint->SetMaterialCutsCouple(theCouple);
416  G4double safety = 10000.*cm;
417  aPoint->SetSafety(safety);
418  step->SetPreStepPoint(aPoint);
419 
420  // Check applicability
421 
422  if (! (gammaProcess->IsApplicable(*gamma)))
423    {
424      G4Exception("Not Applicable");
425    }
426  else 
427    {
428      G4cout<< "applicability OK" << G4endl;
429    }
430 
431  // Initialize the physics tables (in which material?)
432  //G4cout << "Prima del build" << G4endl;
433  gammaProcess->BuildPhysicsTable(*gamma);
434  //G4cout << "Dopo il buildt" << G4endl;
435
436  theeminusMultipleScattering->BuildPhysicsTable(*electron);
437  theeminusIonisation->BuildPhysicsTable(*electron);       
438  theeminusBremsstrahlung->BuildPhysicsTable(*electron);
439  theeplusMultipleScattering->BuildPhysicsTable(*positron);
440  theeplusIonisation->BuildPhysicsTable(*positron);
441  theeplusBremsstrahlung->BuildPhysicsTable(*positron);     
442  theeplusAnnihilation->BuildPhysicsTable(*positron) ;
443
444  G4cout<< "table OK" << G4endl;
445 
446  // Test GetMeanFreePath()
447  // E' protected! Il membro accessibile e' DumpMeanFreePath()
448 
449  G4Material* apttoMaterial ;
450  G4String MaterialName ;
451 
452  G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
453  const G4int pntNum = 300;
454  G4double Tkin[pntNum+1];
455  G4double meanFreePath=0. ;
456
457  argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
458 
459  for(G4int d = 0; d < pntNum+1; d++)
460    { 
461      Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
462    }
463 
464  G4double sti = 1.*mm;
465  step->SetStepLength(sti);
466 
467  //  for ( G4int J = 0 ; J < nMaterials ; J++ )
468  //  {
469  apttoMaterial = (*theMaterialTable)[materialId] ;
470  MaterialName  = apttoMaterial->GetName() ;
471  logicalFrame->SetMaterial(apttoMaterial); 
472 
473  gTrack->SetStep(step);
474
475  G4PenelopeGammaConversion* gammaLowEProcess =
476    (G4PenelopeGammaConversion*) gammaProcess;
477  G4LowEnergyGammaConversion* gammaLowEProcess2 =
478    (G4LowEnergyGammaConversion*) gammaProcess;
479  G4GammaConversion* gammaStdProcess =
480    (G4GammaConversion*) gammaProcess;
481 
482 
483  for (G4int i=0 ; i<pntNum; i++)
484    {
485      dynamicGamma.SetKineticEnergy(Tkin[i]);
486      if (processType == 1)
487        {
488          meanFreePath=gammaLowEProcess
489            ->DumpMeanFreePath(*gTrack, sti, condition);
490        }
491      else if (processType == 2)
492        {
493          meanFreePath=gammaLowEProcess2
494            ->DumpMeanFreePath(*gTrack, sti, condition);
495        }
496      else if (processType == 3)
497        {
498          meanFreePath=gammaStdProcess
499            ->GetMeanFreePath(*gTrack, sti, condition);
500        }
501
502      ntuple3->fill(ntuple3->findColumn("kinen"),std::log10(Tkin[i]));
503      ntuple3->fill(ntuple3->findColumn("mfp"),std::log10(meanFreePath/cm));
504      ntuple3->addRow();
505
506   
507      //      G4cout << meanFreePath/cm << G4endl;
508
509    }
510  G4cout << "Mean Free Path OK" << G4endl;
511 
512  // --------- Test the DoIt
513 
514  G4cout << "DoIt in " << material->GetName() << G4endl;
515
516
517  dynamicGamma.SetKineticEnergy(eEnergy);
518  G4int iter;
519  for (iter=0; iter<nIterations; iter++)
520    {
521     
522      step->SetStepLength(1*micrometer);
523     
524      G4cout  <<  "Iteration = "  <<  iter
525              << "  -  Step Length = " 
526              << step->GetStepLength()/mm << " mm "
527              << G4endl;
528     
529   
530      gTrack->SetStep(step); 
531     
532 
533      //      G4cout  <<  "Iteration = "  <<  iter
534      //              << "  -  Step Length = "
535      //      << step->GetStepLength()/mm << " mm "
536      //      << G4endl;
537     
538      //G4cout << gTrack->GetStep()->GetStepLength()/mm
539      //     << G4endl;
540     
541      G4VParticleChange* dummy;
542      G4cout << "Prima" << G4endl;
543      dummy = gammaProcess->PostStepDoIt(*gTrack, *step);
544      G4cout << "Dopo" << G4endl;
545
546      G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
547     
548      // Primary physical quantities
549     
550      G4double energyChange = particleChange->GetEnergy();
551     
552      G4double dedx = initEnergy - energyChange ;
553      G4double dedxNow = dedx / (step->GetStepLength());
554     
555      G4ThreeVector eChange = 
556        particleChange->CalcMomentum(energyChange,
557                                     (*particleChange->GetMomentumDirection()),
558                                     particleChange->GetMass());
559     
560      G4double pxChange  = eChange.x();
561      G4double pyChange  = eChange.y();
562      G4double pzChange  = eChange.z();
563      G4double pChange   = 
564        std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
565     
566      G4double xChange = particleChange->GetPosition()->x();
567      G4double yChange = particleChange->GetPosition()->y();
568      G4double zChange = particleChange->GetPosition()->z();
569      G4double thetaChange = particleChange->GetPosition()->theta();
570     
571      G4cout << "---- Primary after the step ---- " << G4endl;
572 
573      //      G4cout << "Position (x,y,z) = "
574      //             << xChange << "  "
575      //             << yChange << "   "
576      //             << zChange << "   "
577      //             << G4endl;
578
579      G4cout << "---- Energy: " << energyChange/MeV << " MeV,  " 
580             << "(px,py,pz): ("
581             << pxChange/MeV << ","
582             << pyChange/MeV << "," 
583             << pzChange/MeV << ") MeV"
584             << G4endl;
585     
586      G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
587      //      G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
588 
589      // ntuple1->fill(ntuple1->findColumn("eprimary"),initEnergy/MeV);
590//       ntuple1->fill(ntuple1->findColumn("energyf"),energyChange/MeV);
591//       ntuple1->fill(ntuple1->findColumn("de"),dedx/MeV);
592//       ntuple1->fill(ntuple1->findColumn("dedx"),dedxNow/(MeV/cm));
593//       ntuple1->fill(ntuple1->findColumn("pxch"),pxChange/MeV);
594//       ntuple1->fill(ntuple1->findColumn("pych"),pyChange/MeV);
595//       ntuple1->fill(ntuple1->findColumn("pzch"),pzChange/MeV);
596//       ntuple1->fill(ntuple1->findColumn("pch"),pChange/MeV);
597//       ntuple1->fill(ntuple1->findColumn("thetach"),thetaChange);
598//       ntuple1->addRow();
599
600      // Secondaries physical quantities
601           
602      // Secondaries
603      hNSec->fill(particleChange->GetNumberOfSecondaries());
604      hDebug->fill(particleChange->GetLocalEnergyDeposit());
605     
606      G4cout << " secondaries " << 
607        particleChange->GetNumberOfSecondaries() << G4endl;
608      G4double px_el,py_el,pz_el,p_el,e_el,theta_el,eKin_el;
609      G4double px_po,py_po,pz_po,p_po,e_po,theta_po,eKin_po;
610     
611      for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) 
612        {
613          // The following two items should be filled per event, not
614          // per secondary; filled here just for convenience, to avoid
615          // complicated logic to dump ntuple when there are no secondaries
616         
617          G4Track* finalParticle = particleChange->GetSecondary(i) ;
618         
619          G4double e    = finalParticle->GetTotalEnergy();
620          G4double eKin = finalParticle->GetKineticEnergy();
621          G4double px   = (finalParticle->GetMomentum()).x();
622          G4double py   = (finalParticle->GetMomentum()).y();
623          G4double pz   = (finalParticle->GetMomentum()).z();
624          G4double theta   = (finalParticle->GetMomentum()).theta();
625          G4double p   = std::sqrt(px*px+py*py+pz*pz);
626          theta = theta/deg; //conversion in degrees
627          if (e > initEnergy)
628            {
629              G4cout << "WARNING: eFinal > eInit " << G4endl;
630              //             << e
631              //                     << " > " initEnergy
632             
633            }
634         
635          G4String particleName = 
636            finalParticle->GetDefinition()->GetParticleName();
637          G4cout  << "==== Final " 
638                  <<  particleName  <<  " " 
639                  << "energy: " <<  e/MeV  <<  " MeV,  " 
640                  << "eKin: " <<  eKin/MeV  <<  " MeV, " 
641                  << "(px,py,pz): ("
642                  <<  px/MeV  <<  "," 
643                  <<  py/MeV  <<  ","
644                  <<  pz/MeV  << ") MeV "
645                  <<  G4endl;   
646         
647          hEKin->fill(eKin);
648          hP->fill(p);
649         
650          G4int partType;
651          if (particleName == "e-") {
652            partType = 1;
653            px_el=px;
654            py_el=py;
655            pz_el=pz;
656            p_el=p;
657            e_el=e;
658            theta_el=theta;
659            eKin_el=eKin;
660          }
661          else if (particleName == "e+") 
662            {
663              partType = 2;
664              px_po=px;
665              py_po=py;
666              pz_po=pz;
667              p_po=p;
668              e_po=e;
669              theta_po=theta;
670              eKin_po=eKin;
671            }
672          else if (particleName == "gamma") partType = 3;
673         
674
675          delete particleChange->GetSecondary(i);
676        }
677     
678          // Fill the secondaries ntuple
679
680      // Normalize all to the energy of primary
681      // for gammas initEnergy=initP
682      ntuple2->fill(ntuple2->findColumn("eprimary"),initEnergy);
683      ntuple2->fill(ntuple2->findColumn("px_el"),px_el/initEnergy);
684      ntuple2->fill(ntuple2->findColumn("py_el"),py_el/initEnergy);
685      ntuple2->fill(ntuple2->findColumn("pz_el"),pz_el/initEnergy);
686      ntuple2->fill(ntuple2->findColumn("p_el"),p_el/initEnergy);
687      ntuple2->fill(ntuple2->findColumn("e_el"),e_el/initEnergy);
688      ntuple2->fill(ntuple2->findColumn("theta_el"),theta_el);
689      ntuple2->fill(ntuple2->findColumn("ekin_el"),eKin_el/initEnergy);
690      ntuple2->fill(ntuple2->findColumn("px_po"),px_po/initEnergy);
691      ntuple2->fill(ntuple2->findColumn("py_po"),py_po/initEnergy);
692      ntuple2->fill(ntuple2->findColumn("pz_po"),pz_po/initEnergy);
693      ntuple2->fill(ntuple2->findColumn("p_po"),p_po/initEnergy);
694      ntuple2->fill(ntuple2->findColumn("e_po"),e_po/initEnergy);
695      ntuple2->fill(ntuple2->findColumn("theta_po"),theta_po);
696      ntuple2->fill(ntuple2->findColumn("ekin_po"),eKin_po/initEnergy);
697      ntuple2->addRow();
698      particleChange->Clear();
699     
700    } 
701 
702 
703  G4cout  << "Iteration number: "  <<  iter << G4endl;
704 
705  G4cout << "Committing.............." << G4endl;
706  tree->commit();
707  G4cout << "Closing the tree........" << G4endl;
708  tree->close();
709 
710  delete step;
711
712
713  G4cout << "END OF THE MAIN PROGRAM" << G4endl;
714  return 0;
715}
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
Note: See TracBrowser for help on using the repository browser.