source: trunk/source/processes/electromagnetic/lowenergy/test/G4PenelopeIonisationTest.cc @ 1228

Last change on this file since 1228 was 1199, checked in by garnier, 15 years ago

nvx fichiers dans CVS

File size: 21.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4PenelopeIonisationTest.cc,v 1.4 2006/06/29 19:44:22 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// -------------------------------------------------------------------
31//      GEANT 4 class file --- Copyright CERN 1998
32//      CERN Geneva Switzerland
33//
34//
35//      File name:     G4PenelopeIonisationTest.cc
36//
37//      Author:        Francesco Longo
38//
39//      Creation date: 04 january 2001
40//
41//      Modifications: Luciano Pandola  (27 november 2002)
42//                     Adapted in order to test G4PenelopeIonisation
43//                     Minor modification in n-tuple filling
44//                     Updated analysis to AIDA 3.0
45//
46// -------------------------------------------------------------------
47
48#include "globals.hh"
49#include "G4ios.hh"
50
51#include "G4ParticleDefinition.hh"
52#include "G4ParticleTypes.hh"
53#include "G4ParticleTable.hh"
54#include "G4Material.hh"
55#include "G4MaterialTable.hh"
56#include "G4VContinuousDiscreteProcess.hh"
57#include "G4VProcess.hh"
58#include "G4ProcessManager.hh"
59#include "G4RunManager.hh"
60
61#include "G4PenelopeIonisation.hh"
62#include "G4LowEnergyIonisation.hh"
63#include "G4eIonisation.hh"
64
65#include "G4EnergyLossTables.hh"
66#include "G4VParticleChange.hh"
67#include "G4ParticleChange.hh"
68#include "G4DynamicParticle.hh"
69#include "G4ForceCondition.hh"
70
71#include "G4MultipleScattering.hh"
72#include "G4eplusAnnihilation.hh"
73
74//#include "G4ComptonScattering.hh"
75//#include "G4PhotoElectricEffect.hh"
76
77#include "G4Electron.hh"
78#include "G4Positron.hh"
79#include "G4Gamma.hh"
80
81#include "G4GRSVolume.hh"
82#include "G4Box.hh"
83#include "G4PVPlacement.hh"
84#include "G4Step.hh"
85#include "G4ProductionCutsTable.hh"
86#include "G4MaterialCutsCouple.hh"
87
88#include "G4UnitsTable.hh"
89#include "AIDA/IManagedObject.h"
90
91#include <memory>
92#include "AIDA/IAnalysisFactory.h"
93#include "AIDA/ITreeFactory.h"
94#include "AIDA/ITree.h"
95#include "AIDA/IHistogramFactory.h"
96#include "AIDA/IHistogram1D.h"
97#include "AIDA/IHistogram2D.h"
98#include "AIDA/IHistogram3D.h"
99#include "AIDA/ITupleFactory.h"
100#include "AIDA/ITuple.h"
101
102
103int main()
104{
105
106  // Setup
107
108  G4int nIterations = 100000;
109  G4int materialId = 3;
110  G4int test=0;
111  G4int tPart=1;
112  //G4cout.setf(G4std::ios::scientific,G4std::ios::floatfield );
113
114  // -------------------------------------------------------------------
115
116  // ---- HBOOK initialization
117
118  std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() );
119  std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory());
120  std::auto_ptr< AIDA::ITree > tree (tf->create("pen_ion_test.hbook","hbook",false,true));
121  G4cout << "Tree store: " << tree->storeName() << G4endl;
122  std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree));
123  std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree));
124 
125  // ---- primary ntuple ------
126  AIDA::ITuple* ntuple1 = tpf->create("1","Primary Ntuple",
127                                      "double eprimary,energyf,de,dedx,pxch,pych,pzch,pch,thetach,costhetach");
128 
129  // ---- secondary ntuple ------
130  AIDA::ITuple* ntuple2 = tpf->create("2","Secondary Ntuple",
131                                      "double eprimary,px_el,py_el,pz_el,p_el,e_el,theta_el,ekin_el,costheta_el");
132
133  // ---- table ntuple ------
134  AIDA::ITuple* ntuple3 = tpf->create("3","Mean Free Path Ntuple","double kinen,mfp");
135  // ---- fluorescence ntuple -------
136
137  //--------- Materials definition ---------
138
139  G4Material* Si  = new G4Material("Silicon",   14., 28.055*g/mole, 2.33*g/cm3);
140  G4Material* Fe  = new G4Material("Iron",      26., 55.85*g/mole, 7.87*g/cm3);
141  G4Material* Cu  = new G4Material("Copper",    29., 63.55*g/mole, 8.96*g/cm3);
142  G4Material*  W  = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
143  G4Material* Pb  = new G4Material("Lead",      82., 207.19*g/mole, 11.35*g/cm3);
144  G4Material*  U  = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
145  G4Material* Al  = new G4Material("Aluminum",13.,26.98*g/mole,2.7*g/cm3);
146  G4Material* Au  = new G4Material("Gold"    ,79.,196.97*g/mole,19.3*g/cm3);
147
148  G4Element*   H  = new G4Element ("Hydrogen", "H", 1. ,  1.01*g/mole);
149  G4Element*   O  = new G4Element ("Oxygen"  , "O", 8. , 16.00*g/mole);
150  G4Element*   C  = new G4Element ("Carbon"  , "C", 6. , 12.00*g/mole);
151  G4Element*  Cs  = new G4Element ("Cesium"  , "Cs", 55. , 132.905*g/mole);
152  G4Element*   I  = new G4Element ("Iodine"  , "I", 53. , 126.9044*g/mole);
153
154  G4Material*  maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
155
156  G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
157  water->AddElement(H,2);
158  water->AddElement(O,1);
159
160  G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
161  ethane->AddElement(H,6);
162  ethane->AddElement(C,2);
163 
164  G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
165  csi->AddElement(Cs,1);
166  csi->AddElement(I,1);
167
168
169  // Interactive set-up
170  G4cout << "Electrons [1] or Positrons [2] ?" << G4endl;
171  G4cin >> tPart;
172  if ( !(tPart == 1 || tPart == 2)) G4Exception("Wrong input");
173
174
175  G4cout << "Test AlongStepDoIt [1] or PostStepDoIt [2] ?" << G4endl;
176  G4cin >> test;
177  if ( !(test == 1 || test == 2)) G4Exception("Wrong input");
178
179
180
181  G4cout << "How many interactions? " << G4endl;
182  G4cin >> nIterations;
183
184  if (nIterations <= 0) G4Exception("Wrong input");
185
186  G4double initEnergy = 1*MeV; 
187  G4double initX = 0.; 
188  G4double initY = 0.; 
189  G4double initZ = 1.;
190 
191  G4cout << "Enter the initial particle energy E (MeV)" << G4endl; 
192  G4cin >> initEnergy ;
193
194
195  initEnergy = initEnergy*MeV;
196 
197  if (initEnergy  <= 0.) G4Exception("Wrong input");
198
199  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
200
201  G4int nMaterials = G4Material::GetNumberOfMaterials();
202
203  G4cout << "Available materials are: " << G4endl;
204  for (G4int mat = 0; mat < nMaterials; mat++)
205    {
206      G4cout << mat << ") "
207             << (*theMaterialTable)[mat]->GetName()
208             << G4endl;
209    }
210 
211  G4cout << "Which material? " << G4endl;
212  G4cin >> materialId;
213 
214  G4Material* material = (*theMaterialTable)[materialId] ;
215
216  G4cout << "The selected material is: "
217         << material->GetName()
218         << G4endl;
219 
220  G4double dimX = 1*mm;
221  G4double dimY = 1*mm;
222  G4double dimZ = 1*mm;
223 
224  // Geometry
225 
226  G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
227 
228  G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
229                                                      (*theMaterialTable)[materialId],
230                                                      "LFrame", 0, 0, 0);
231  logicalFrame->SetMaterial(material); 
232 
233  G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
234                                                   "PFrame",logicalFrame,0,false,0);
235  G4RunManager* rm = new G4RunManager();
236  G4cout << "World is defined " << G4endl;
237  rm->GeometryHasBeenModified();
238  rm->DefineWorldVolume(physicalFrame);
239  // Particle definitions
240 
241  G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
242  G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
243  G4ParticleDefinition* positron = G4Positron::PositronDefinition();
244 
245 
246  G4ParticleDefinition* realpt = G4Electron::ElectronDefinition();
247
248  if (tPart == 2)
249    {
250      realpt = G4Positron::PositronDefinition();
251    }
252 
253  G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable();
254  G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts();
255  G4double cutG=1*micrometer;
256  G4double cutE=1*micrometer;
257  cuts->SetProductionCut(cutG, 0); //gammas
258  cuts->SetProductionCut(cutE, 1); //electrons
259  cuts->SetProductionCut(cutE, 2); //positrons
260  G4cout << "Cuts are defined " << G4endl;
261 
262  //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
263  //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
264  //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
265 
266  cutsTable->UpdateCoupleTable();
267  //cutsTable->DumpCouples();
268  const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts);
269  G4int index = theCouple->GetIndex();
270  G4double tCut = (*(cutsTable->GetEnergyCutsVector(1)))[index];
271
272  G4cout << "Cut for delta in " << theCouple->GetMaterial()->GetName() << ": " << tCut/keV << " keV" << G4endl;
273
274  // Processes
275  G4int processType;
276  G4cout << "Standard [1] or LowEnergy[2] or Penelope [3] Ionisation?" << G4endl;
277  G4cin >> processType;
278  if ( !(processType == 1 || processType == 2 || processType == 3))
279    {
280      G4Exception("Wrong input");
281    }
282
283  G4VContinuousDiscreteProcess* bremProcess;
284
285  if (processType == 1)
286    {
287      bremProcess = new G4eIonisation();
288      G4cout << "The selected model is Standard" << G4endl;
289    }
290  else if (processType == 2)
291    {
292      bremProcess = new G4LowEnergyIonisation();
293      G4cout << "The selected model is Low Energy" << G4endl;
294    }
295  else if (processType == 3)
296    {
297     
298      bremProcess = new G4PenelopeIonisation();
299      G4cout << "The selected model is Penelope" << G4endl;
300    }
301 
302  //----------------
303  // process manager 
304  //----------------
305
306  // electron or positron
307 
308 
309  G4ProcessManager* ProcessManager = new G4ProcessManager(realpt);
310  realpt->SetProcessManager(ProcessManager);
311  ProcessManager->AddProcess(bremProcess);
312  G4ForceCondition* condition; 
313
314 
315  //--------------
316  // set ordering   
317  //--------------
318
319
320//   eProcessManager->
321//     SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
322//   eProcessManager->
323//     SetProcessOrdering(theeminusIonisation,         idxAlongStep,2);
324     
325//   eProcessManager->
326//     SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
327//   eProcessManager->
328//     SetProcessOrdering(theeminusIonisation,         idxPostStep,2);
329//   eProcessManager->
330//     SetProcessOrdering(theeminusIonisation,     idxPostStep,3);
331
332
333
334  // pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
335//   pProcessManager->
336//     SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
337//   pProcessManager->
338//     SetProcessOrdering(theeplusIonisation,         idxAlongStep,2);
339
340//   pProcessManager->
341//     SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
342//   pProcessManager->
343//     SetProcessOrdering(theeplusIonisation,         idxPostStep,2);
344//   pProcessManager->
345//     SetProcessOrdering(theeplusIonisation,     idxPostStep,3);
346//   pProcessManager->
347//     SetProcessOrdering(theeplusAnnihilation,       idxPostStep,4);
348 
349  // G4LowEnergyIonisation IonisationProcess;
350  // eProcessManager->AddProcess(&IonisationProcess);
351  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1);
352  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep, 1);
353 
354  // G4LowEnergyIonisation BremstrahlungProcess;
355  // eProcessManager->AddProcess(&BremstrahlungProcess);
356  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1);
357  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep, 1);
358 
359  // G4eIonisation IonisationPlusProcess;
360  // pPositronProcessManager->AddProcess(&IonisationPlusProcess);
361  // pProcessManager->
362  //        SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1);
363  // pProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1);
364
365
366
367  // Create a DynamicParticle 
368 
369  G4double eEnergy = initEnergy*MeV;
370  G4ParticleMomentum eDirection(initX,initY,initZ);
371  //eEnergy is the KINETIK energy
372  G4DynamicParticle dynamicPrimary(realpt,eDirection,eEnergy);
373
374  dynamicPrimary.DumpInfo(0);
375 
376  // Track
377
378  G4ThreeVector aPosition(0.,0.,0.);
379  G4double aTime = 0. ;
380 
381  G4Track* eTrack = new G4Track(&dynamicPrimary,aTime,aPosition);
382  G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);   
383  eTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!!
384
385
386  // Step
387
388  G4Step* step = new G4Step(); 
389  step->SetTrack(eTrack);
390
391  G4StepPoint* aPoint = new G4StepPoint();
392  aPoint->SetPosition(aPosition);
393  aPoint->SetMaterial(material);
394  aPoint->SetMaterialCutsCouple(theCouple);
395  G4double safety = 10000.*cm;
396  aPoint->SetSafety(safety);
397  step->SetPreStepPoint(aPoint);
398 
399  // Check applicability
400 
401  if (! (bremProcess->IsApplicable(*realpt)))
402    {
403      G4Exception("Not Applicable");
404    }
405  else 
406    {
407      G4cout<< "applicability OK" << G4endl;
408    }
409 
410  // Initialize the physics tables (in which material?)
411  //G4cout << "Prima del build" << G4endl;
412  bremProcess->BuildPhysicsTable(*realpt);
413  //G4cout << "Dopo il buildt" << G4endl;
414
415  G4cout<< "table OK" << G4endl;
416 
417  // Test GetMeanFreePath()
418  // E' protected! Il membro accessibile e' DumpMeanFreePath()
419 
420  G4Material* apttoMaterial ;
421  G4String MaterialName ;
422 
423  G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
424  const G4int pntNum = 300;
425  G4double Tkin[pntNum+1];
426  G4double meanFreePath=0. ;
427
428  argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
429 
430  for(G4int d = 0; d < pntNum+1; d++)
431    { 
432      Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
433    }
434 
435  G4double sti = 1.*mm;
436  step->SetStepLength(sti);
437 
438  //  for ( G4int J = 0 ; J < nMaterials ; J++ )
439  //  {
440  apttoMaterial = (*theMaterialTable)[materialId] ;
441  MaterialName  = apttoMaterial->GetName() ;
442  logicalFrame->SetMaterial(apttoMaterial); 
443 
444  eTrack->SetStep(step);
445
446  G4PenelopeIonisation* LowEProcess =
447    (G4PenelopeIonisation*) bremProcess;
448  G4LowEnergyIonisation* LowEProcess2 =
449    (G4LowEnergyIonisation*) bremProcess;
450  G4eIonisation* StdProcess =
451    (G4eIonisation*) bremProcess;
452 
453 
454  for (G4int i=0 ; i<pntNum; i++)
455    {
456      dynamicPrimary.SetKineticEnergy(Tkin[i]);
457      if (processType == 3)
458        {
459          //      meanFreePath=LowEProcess
460          //->DumpMeanFreePath(*eTrack, sti, condition);
461        }
462      else if (processType == 2)
463        {
464          //meanFreePath=electronLowEProcess2
465          // ->DumpMeanFreePath(*eTrack, sti, condition);
466         
467        }
468      else if (processType == 1)
469        { 
470          // meanFreePath=StdProcess
471          // ->GetMeanFreePath(*eTrack, sti, condition);
472        }
473
474      ntuple3->fill(ntuple3->findColumn("kinen"),std::log10(Tkin[i]));
475      ntuple3->fill(ntuple3->findColumn("mfp"),meanFreePath/cm);
476      ntuple3->addRow();
477
478   
479      //G4cout << Tkin[i]/MeV << " " <<  meanFreePath/cm << G4endl;
480
481    }
482  G4cout << "Mean Free Path OK" << G4endl;
483 
484  // --------- Test the DoIt
485 
486  G4cout << "DoIt in " << material->GetName() << G4endl;
487
488
489  dynamicPrimary.SetKineticEnergy(eEnergy);
490  G4int iter;
491  for (iter=0; iter<nIterations; iter++)
492    {
493     
494      step->SetStepLength(1*micrometer);
495     
496      G4cout  <<  "Iteration = "  <<  iter
497              << "  -  Step Length = " 
498              << step->GetStepLength()/mm << " mm "
499              << G4endl;
500     
501   
502      eTrack->SetStep(step); 
503     
504 
505      //      G4cout  <<  "Iteration = "  <<  iter
506      //              << "  -  Step Length = "
507      //      << step->GetStepLength()/mm << " mm "
508      //      << G4endl;
509     
510      //G4cout << eTrack->GetStep()->GetStepLength()/mm
511      //     << G4endl;
512     
513      //G4cout << "Prima" << G4endl;
514      G4VParticleChange* dummy;
515      if (test==1) dummy = bremProcess->AlongStepDoIt(*eTrack, *step);
516      if (test==2) dummy = bremProcess->PostStepDoIt(*eTrack,*step);
517      //G4cout << "Dopo" << G4endl;
518
519      G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
520     
521      // Primary physical quantities
522     
523      G4double energyChange = particleChange->GetEnergyChange();
524      G4double dedx = initEnergy - energyChange ;
525      G4double dedxNow = dedx / (step->GetStepLength());
526     
527      G4ThreeVector eChange = 
528        particleChange->CalcMomentum(energyChange,
529                                     (*particleChange->GetMomentumChange()),
530                                     particleChange->GetMassChange());
531     
532      G4double pxChange  = eChange.x();
533      G4double pyChange  = eChange.y();
534      G4double pzChange  = eChange.z();
535      G4double pChange   = 
536        std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
537     
538      G4double xChange = particleChange->GetPositionChange()->x();
539      G4double yChange = particleChange->GetPositionChange()->y();
540      G4double zChange = particleChange->GetPositionChange()->z();
541
542      G4double thetaChange = particleChange->GetMomentumChange()->theta();
543      thetaChange = thetaChange/deg; //conversion in degrees
544     
545      G4cout << "---- Primary after the step ---- " << G4endl;
546 
547      //      G4cout << "Position (x,y,z) = "
548      //             << xChange << "  "
549      //             << yChange << "   "
550      //             << zChange << "   "
551      //             << G4endl;
552
553      G4cout << "---- Energy: " << energyChange/MeV << " MeV,  " 
554             << "(px,py,pz): ("
555             << pxChange/MeV << ","
556             << pyChange/MeV << "," 
557             << pzChange/MeV << ") MeV"
558             << G4endl;
559     
560      G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
561      //      G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
562 
563       ntuple1->fill(ntuple1->findColumn("eprimary"),initEnergy/MeV);
564       ntuple1->fill(ntuple1->findColumn("energyf"),energyChange/MeV);
565       ntuple1->fill(ntuple1->findColumn("de"),dedx/MeV);
566       ntuple1->fill(ntuple1->findColumn("dedx"),dedxNow/(MeV/cm));
567       ntuple1->fill(ntuple1->findColumn("pxch"),pxChange/MeV);
568       ntuple1->fill(ntuple1->findColumn("pych"),pyChange/MeV);
569       ntuple1->fill(ntuple1->findColumn("pzch"),pzChange/MeV);
570       ntuple1->fill(ntuple1->findColumn("pch"),pChange/MeV);
571       ntuple1->fill(ntuple1->findColumn("thetach"),thetaChange);
572       ntuple1->fill(ntuple1->findColumn("costhetach"),std::cos(particleChange->GetMomentumChange()->theta()));
573       ntuple1->addRow();
574
575      // Secondaries physical quantities
576           
577      // Secondaries
578      G4cout << " secondaries " << 
579        particleChange->GetNumberOfSecondaries() << G4endl;
580      G4double px_el,py_el,pz_el,p_el,e_el,theta_el,eKin_el;
581     
582      for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) 
583        {
584          // The following two items should be filled per event, not
585          // per secondary; filled here just for convenience, to avoid
586          // complicated logic to dump ntuple when there are no secondaries
587         
588          G4Track* finalParticle = particleChange->GetSecondary(i) ;
589         
590          G4double e    = finalParticle->GetTotalEnergy();
591          G4double eKin = finalParticle->GetKineticEnergy();
592          G4double px   = (finalParticle->GetMomentum()).x();
593          G4double py   = (finalParticle->GetMomentum()).y();
594          G4double pz   = (finalParticle->GetMomentum()).z();
595          G4double theta   = (finalParticle->GetMomentum()).theta();
596          G4double p   = std::sqrt(px*px+py*py+pz*pz);
597          theta = theta/deg; //conversion in degrees
598          if (e > initEnergy)
599            {
600              G4cout << "WARNING: eFinal > eInit " << G4endl;
601              //             << e
602              //                     << " > " initEnergy
603             
604            }
605         
606          G4String particleName = 
607            finalParticle->GetDefinition()->GetParticleName();
608          G4cout  << "==== Final " 
609                  <<  particleName  <<  " " 
610                  << "energy: " <<  e/MeV  <<  " MeV,  " 
611                  << "eKin: " <<  eKin/MeV  <<  " MeV, " 
612                  << "(px,py,pz): ("
613                  <<  px/MeV  <<  "," 
614                  <<  py/MeV  <<  ","
615                  <<  pz/MeV  << ") MeV "
616                  <<  G4endl;   
617         
618
619       G4int partType;
620          if (particleName == "e-") {
621            partType = 1;
622            px_el=px;
623            py_el=py;
624            pz_el=pz;
625            p_el=p;
626            e_el=e;
627            theta_el=theta;
628            eKin_el=eKin;
629          }
630          else if (particleName == "gamma") partType = 2;
631         
632
633          delete particleChange->GetSecondary(i);
634       
635     
636          // Fill the secondaries ntuple
637         
638          // Normalize all to the energy of primary
639          // for gammas initEnergy=initP
640            ntuple2->fill(ntuple2->findColumn("eprimary"),initEnergy);
641            ntuple2->fill(ntuple2->findColumn("px_el"),px_el/initEnergy);
642            ntuple2->fill(ntuple2->findColumn("py_el"),py_el/initEnergy);
643            ntuple2->fill(ntuple2->findColumn("pz_el"),pz_el/initEnergy);
644            ntuple2->fill(ntuple2->findColumn("p_el"),p_el/initEnergy);
645            ntuple2->fill(ntuple2->findColumn("e_el"),e_el/MeV);
646            ntuple2->fill(ntuple2->findColumn("theta_el"),theta_el);
647            ntuple2->fill(ntuple2->findColumn("ekin_el"),eKin_el/MeV);
648            ntuple2->fill(ntuple2->findColumn("costheta_el"),std::cos(particleChange->GetMomentumChange()->theta()));
649            ntuple2->addRow();       
650        }
651      particleChange->Clear(); 
652    }
653 
654 
655  G4cout  << "Iteration number: "  <<  iter << G4endl;
656 
657  G4cout << "Committing.............." << G4endl;
658  tree->commit();
659  G4cout << "Closing the tree........" << G4endl;
660  tree->close();
661 
662  delete step;
663
664
665  G4cout << "END OF THE MAIN PROGRAM" << G4endl;
666  return 0;
667}
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
Note: See TracBrowser for help on using the repository browser.