source: trunk/source/processes/electromagnetic/lowenergy/test/G4PenelopePhotoElectricTest.cc@ 1314

Last change on this file since 1314 was 1199, checked in by garnier, 16 years ago

nvx fichiers dans CVS

File size: 22.4 KB
RevLine 
[1199]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4PenelopePhotoElectricTest.cc,v 1.7 2006/06/29 19:44:24 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// -------------------------------------------------------------------
31// GEANT 4 class file --- Copyright CERN 1998
32// CERN Geneva Switzerland
33//
34//
35// File name: G4PenelopePhotoElectricTest.cc
36//
37// Author: Francesco Longo
38//
39// Creation date: 04 january 2001
40//
41// Modifications: Luciano Pandola (15 january 2003)
42// Adapted in order to test G4PenelopePhotoElectric
43// Minor modification in n-tuple filling
44// Updated analysis to AIDA 3.0
45//
46// -------------------------------------------------------------------
47
48#include "globals.hh"
49#include "G4ios.hh"
50#include <fstream>
51#include <iomanip>
52
53#include "G4ParticleDefinition.hh"
54#include "G4ParticleTypes.hh"
55#include "G4ParticleTable.hh"
56#include "G4Material.hh"
57#include "G4MaterialTable.hh"
58#include "G4VDiscreteProcess.hh"
59#include "G4VProcess.hh"
60#include "G4ProcessManager.hh"
61
62#include "G4PenelopePhotoElectric.hh"
63#include "G4LowEnergyPhotoElectric.hh"
64#include "G4PhotoElectricEffect.hh"
65#include "G4RunManager.hh"
66#include "G4EnergyLossTables.hh"
67#include "G4VParticleChange.hh"
68#include "G4ParticleChange.hh"
69#include "G4DynamicParticle.hh"
70#include "G4ForceCondition.hh"
71
72#include "G4LowEnergyBremsstrahlung.hh"
73#include "G4LowEnergyIonisation.hh"
74#include "G4eIonisation.hh"
75#include "G4MultipleScattering.hh"
76#include "G4eIonisation.hh"
77#include "G4eBremsstrahlung.hh"
78#include "G4eplusAnnihilation.hh"
79#include "G4Electron.hh"
80#include "G4Positron.hh"
81#include "G4Gamma.hh"
82
83#include "G4GRSVolume.hh"
84#include "G4Box.hh"
85#include "G4PVPlacement.hh"
86#include "G4Step.hh"
87#include "G4ProductionCutsTable.hh"
88#include "G4MaterialCutsCouple.hh"
89
90
91#include "G4UnitsTable.hh"
92#include "AIDA/IManagedObject.h"
93
94#include <memory>
95#include "AIDA/IAnalysisFactory.h"
96#include "AIDA/ITreeFactory.h"
97#include "AIDA/ITree.h"
98#include "AIDA/IHistogramFactory.h"
99#include "AIDA/IHistogram1D.h"
100#include "AIDA/IHistogram2D.h"
101#include "AIDA/IHistogram3D.h"
102#include "AIDA/ITupleFactory.h"
103#include "AIDA/ITuple.h"
104
105
106G4int main()
107{
108
109 // Setup
110
111 G4int nIterations = 100000;
112 G4int materialId = 3;
113
114 //G4cout.setf(std::ios::scientific,std::ios::floatfield );
115
116 // -------------------------------------------------------------------
117
118 // ---- HBOOK initialization
119
120 std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() );
121 std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory());
122 std::auto_ptr< AIDA::ITree > tree (tf->create("pen_ph_test.hbook","hbook",false,true));
123 G4cout << "Tree store: " << tree->storeName() << G4endl;
124 std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree));
125 std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree));
126
127 // ---- primary ntuple ------
128 AIDA::ITuple* ntuple1 = tpf->create("1","Primary Ntuple","double eprimary,energyf,de,dedx,pxch,pych,pzch,pch,thetach");
129
130 // ---- secondary ntuple ------
131 AIDA::ITuple* ntuple2 = tpf->create("2","Secondary Ntuple","double eprimary,px_el,py_el,pz_el,p_el,e_el,theta_el,ekin_el,partType");
132
133 // ---- table ntuple ------
134 AIDA::ITuple* ntuple3 = tpf->create("3","Mean Free Path Ntuple","double kinen,mfp");
135
136 //--------- Materials definition ---------
137
138 G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3);
139 G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3);
140 G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3);
141 G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
142 G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3);
143 G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
144 G4Material* Al = new G4Material("Aluminum",13.,26.98*g/mole,2.7*g/cm3);
145 G4Material* Au = new G4Material("Gold" ,79.,196.97*g/mole,19.3*g/cm3);
146 G4Material* Ge = new G4Material("Germanium",32.,72.61*g/mole,5.5*g/cm3);
147
148 G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole);
149 G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole);
150 G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole);
151 G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole);
152 G4Element* I = new G4Element ("Iodine" , "I", 53. , 126.9044*g/mole);
153
154 G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 0.7*mg/cm3);
155 G4Material* maC = new G4Material("Carbon", 6., 12.00*g/mole, 2.27*g/cm3);
156
157 G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
158 water->AddElement(H,2);
159 water->AddElement(O,1);
160
161 G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
162 ethane->AddElement(H,6);
163 ethane->AddElement(C,2);
164
165 G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
166 csi->AddElement(Cs,1);
167 csi->AddElement(I,1);
168
169 G4Material* maH = new G4Material("Gas Hydrogen",0.0893*mg/cm3,1);
170 maH->AddElement(H,2);
171
172
173
174 // Interactive set-up
175
176 G4cout << "How many interactions? " << G4endl;
177 G4cin >> nIterations;
178
179 if (nIterations <= 0) G4Exception("Wrong input");
180
181 G4double initEnergy = 1*MeV;
182 G4double initX = 0.;
183 G4double initY = 0.;
184 G4double initZ = 1.;
185
186 G4cout << "Enter the initial particle energy E (MeV)" << G4endl;
187 G4cin >> initEnergy ;
188
189 initEnergy = initEnergy*MeV;
190
191 if (initEnergy <= 0.) G4Exception("Wrong input");
192
193 static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
194
195 G4int nMaterials = G4Material::GetNumberOfMaterials();
196
197 G4cout << "Available materials are: " << G4endl;
198 for (G4int mat = 0; mat < nMaterials; mat++)
199 {
200 G4cout << mat << ") "
201 << (*theMaterialTable)[mat]->GetName()
202 << G4endl;
203 }
204
205 G4cout << "Which material? " << G4endl;
206 G4cin >> materialId;
207
208 G4Material* material = (*theMaterialTable)[materialId] ;
209
210 G4cout << "The selected material is: "
211 << material->GetName()
212 << G4endl;
213
214 G4double dimX = 1*mm;
215 G4double dimY = 1*mm;
216 G4double dimZ = 1*mm;
217
218 // Geometry
219
220 G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
221
222 G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
223 (*theMaterialTable)[materialId],
224 "LFrame", 0, 0, 0);
225 logicalFrame->SetMaterial(material);
226
227 G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
228 "PFrame",logicalFrame,0,false,0);
229 G4RunManager* rm = new G4RunManager();
230 G4cout << "World is defined " << G4endl;
231 rm->GeometryHasBeenModified();
232 rm->DefineWorldVolume(physicalFrame);
233
234 // Particle definitions
235
236 G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
237 G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
238 G4ParticleDefinition* positron = G4Positron::PositronDefinition();
239
240 G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable();
241 G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts();
242 G4double cutG=1*micrometer;
243 G4double cutE=1*micrometer;
244 cuts->SetProductionCut(cutG, 0); //gammas
245 cuts->SetProductionCut(cutE, 1); //electrons
246 cuts->SetProductionCut(cutE, 2); //positrons
247 G4cout << "Cuts are defined " << G4endl;
248
249 //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
250 //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
251 //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
252
253 cutsTable->UpdateCoupleTable();
254 //cutsTable->DumpCouples();
255 const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts);
256
257 // Processes
258
259
260 G4int processType;
261 G4cout << "Standard [1] or LowEnergy[2] or Penelope [3] PhotoElectric?" << G4endl;
262 G4cin >> processType;
263 if ( !(processType == 1 || processType == 2 || processType == 3))
264 {
265 G4Exception("Wrong input");
266 }
267
268 G4VDiscreteProcess* gammaProcess;
269
270 if (processType == 1)
271 {
272 gammaProcess = new G4PhotoElectricEffect();
273 G4cout << "The selected model is Standard" << G4endl;
274 }
275 else if (processType == 2)
276 {
277 gammaProcess = new G4LowEnergyPhotoElectric();
278 G4cout << "The selected model is Low Energy" << G4endl;
279 }
280 else if (processType == 3)
281 {
282 gammaProcess = new G4PenelopePhotoElectric();
283 G4cout << "The selected model is Penelope" << G4endl;
284 }
285
286 G4VProcess* theeminusMultipleScattering = new G4MultipleScattering();
287 G4VProcess* theeminusIonisation = new G4eIonisation();
288 G4VProcess* theeminusBremsstrahlung = new G4eBremsstrahlung();
289 G4VProcess* theeplusMultipleScattering = new G4MultipleScattering();
290 G4VProcess* theeplusIonisation = new G4eIonisation();
291 G4VProcess* theeplusBremsstrahlung = new G4eBremsstrahlung();
292 G4VProcess* theeplusAnnihilation = new G4eplusAnnihilation();
293
294 //----------------
295 // process manager
296 //----------------
297
298 // gamma
299
300 G4ProcessManager* gProcessManager = new G4ProcessManager(gamma);
301 gamma->SetProcessManager(gProcessManager);
302 gProcessManager->AddDiscreteProcess(gammaProcess);
303 G4ForceCondition* condition;
304
305 //electron
306
307 G4ProcessManager* eProcessManager = new G4ProcessManager(electron);
308 electron->SetProcessManager(eProcessManager);
309 eProcessManager->AddProcess(theeminusMultipleScattering);
310 eProcessManager->AddProcess(theeminusIonisation);
311 eProcessManager->AddProcess(theeminusBremsstrahlung);
312
313 //positron
314
315 G4ProcessManager* pProcessManager = new G4ProcessManager(positron);
316 positron->SetProcessManager(pProcessManager);
317 pProcessManager->AddProcess(theeplusMultipleScattering);
318 pProcessManager->AddProcess(theeplusIonisation);
319 pProcessManager->AddProcess(theeplusBremsstrahlung);
320 pProcessManager->AddProcess(theeplusAnnihilation);
321
322 //--------------
323 // set ordering
324 //--------------
325
326
327 eProcessManager->
328 SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
329 eProcessManager->
330 SetProcessOrdering(theeminusIonisation, idxAlongStep,2);
331
332 eProcessManager->
333 SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
334 eProcessManager->
335 SetProcessOrdering(theeminusIonisation, idxPostStep,2);
336 eProcessManager->
337 SetProcessOrdering(theeminusBremsstrahlung, idxPostStep,3);
338
339
340
341 pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
342 pProcessManager->
343 SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
344 pProcessManager->
345 SetProcessOrdering(theeplusIonisation, idxAlongStep,2);
346
347 pProcessManager->
348 SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
349 pProcessManager->
350 SetProcessOrdering(theeplusIonisation, idxPostStep,2);
351 pProcessManager->
352 SetProcessOrdering(theeplusBremsstrahlung, idxPostStep,3);
353 pProcessManager->
354 SetProcessOrdering(theeplusAnnihilation, idxPostStep,4);
355
356 // G4LowEnergyIonisation IonisationProcess;
357 // eProcessManager->AddProcess(&IonisationProcess);
358 // eProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1);
359 // eProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep, 1);
360
361 // G4LowEnergyBremsstrahlung BremstrahlungProcess;
362 // eProcessManager->AddProcess(&BremstrahlungProcess);
363 // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1);
364 // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep, 1);
365
366 // G4eIonisation IonisationPlusProcess;
367 // pPositronProcessManager->AddProcess(&IonisationPlusProcess);
368 // pProcessManager->
369 // SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1);
370 // pProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1);
371
372
373
374 // Create a DynamicParticle
375
376 G4double eEnergy = initEnergy*MeV;
377 G4ParticleMomentum eDirection(initX,initY,initZ);
378 G4DynamicParticle dynamicGamma(G4Gamma::Gamma(),eDirection,eEnergy);
379
380 dynamicGamma.DumpInfo(0);
381
382 // Track
383
384 G4ThreeVector aPosition(0.,0.,0.);
385 G4double aTime = 0. ;
386
387 G4Track* gTrack = new G4Track(&dynamicGamma,aTime,aPosition);
388
389 G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);
390 gTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!!
391
392
393 // Step
394
395 G4Step* step = new G4Step();
396 step->SetTrack(gTrack);
397
398 G4StepPoint* aPoint = new G4StepPoint();
399 aPoint->SetPosition(aPosition);
400 aPoint->SetMaterial(material);
401 aPoint->SetMaterialCutsCouple(theCouple);
402 G4double safety = 10000.*cm;
403 aPoint->SetSafety(safety);
404 step->SetPreStepPoint(aPoint);
405
406 // Check applicability
407
408 if (! (gammaProcess->IsApplicable(*gamma)))
409 {
410 G4Exception("Not Applicable");
411 }
412 else
413 {
414 G4cout<< "applicability OK" << G4endl;
415 }
416
417 // Initialize the physics tables (in which material?)
418 //G4cout << "Prima del build" << G4endl;
419 gammaProcess->BuildPhysicsTable(*gamma);
420 //G4cout << "Dopo il buildt" << G4endl;
421
422 theeminusMultipleScattering->BuildPhysicsTable(*electron);
423 theeminusIonisation->BuildPhysicsTable(*electron);
424 theeminusBremsstrahlung->BuildPhysicsTable(*electron);
425 theeplusMultipleScattering->BuildPhysicsTable(*positron);
426 theeplusIonisation->BuildPhysicsTable(*positron);
427 theeplusBremsstrahlung->BuildPhysicsTable(*positron);
428 theeplusAnnihilation->BuildPhysicsTable(*positron) ;
429
430 G4cout<< "table OK" << G4endl;
431
432 // Test GetMeanFreePath()
433 // E' protected! Il membro accessibile e' DumpMeanFreePath()
434
435 G4Material* apttoMaterial ;
436 G4String MaterialName ;
437
438 G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
439 const G4int pntNum = 300;
440 G4double Tkin[pntNum+1];
441 G4double meanFreePath=0. ;
442
443 argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
444
445 for(G4int d = 0; d < pntNum+1; d++)
446 {
447 Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
448 }
449
450 G4double sti = 1.*mm;
451 step->SetStepLength(sti);
452
453 // for ( G4int J = 0 ; J < nMaterials ; J++ )
454 // {
455 apttoMaterial = (*theMaterialTable)[materialId] ;
456 MaterialName = apttoMaterial->GetName() ;
457 logicalFrame->SetMaterial(apttoMaterial);
458
459 gTrack->SetStep(step);
460
461 G4PenelopePhotoElectric* gammaLowEProcess =
462 (G4PenelopePhotoElectric*) gammaProcess;
463 G4LowEnergyPhotoElectric* gammaLowEProcess2 =
464 (G4LowEnergyPhotoElectric*) gammaProcess;
465 G4PhotoElectricEffect* gammaStdProcess =
466 (G4PhotoElectricEffect*) gammaProcess;
467
468
469 for (G4int i=0 ; i<pntNum; i++)
470 {
471 dynamicGamma.SetKineticEnergy(Tkin[i]);
472 if (processType == 3) //Penelope
473 {
474 meanFreePath=gammaLowEProcess
475 ->DumpMeanFreePath(*gTrack, sti, condition);
476 }
477 else if (processType == 2) //Low Energy
478 {
479 meanFreePath=gammaLowEProcess2
480 ->DumpMeanFreePath(*gTrack, sti, condition);
481 }
482 else if (processType == 1) //Standard
483 {
484 meanFreePath=gammaStdProcess
485 ->GetMeanFreePath(*gTrack, sti, condition);
486 }
487
488 //G4cout << "Energia cinetica: " << Tkin[i]/MeV << G4endl;
489 //G4cout << "Mean free path: " << meanFreePath/cm << G4endl;
490
491 ntuple3->fill(ntuple3->findColumn("kinen"),std::log10(Tkin[i]));
492 ntuple3->fill(ntuple3->findColumn("mfp"),std::log10(meanFreePath/cm));
493 ntuple3->addRow();
494 }
495 G4cout << "Mean Free Path OK" << G4endl;
496
497 // --------- Test the DoIt
498
499 G4cout << "DoIt in " << material->GetName() << G4endl;
500
501
502 dynamicGamma.SetKineticEnergy(eEnergy);
503 G4int iter;
504 for (iter=0; iter<nIterations; iter++)
505 {
506
507 step->SetStepLength(1*micrometer);
508
509 G4cout << "Iteration = " << iter
510 << " - Step Length = "
511 << step->GetStepLength()/mm << " mm "
512 << G4endl;
513
514
515 gTrack->SetStep(step);
516
517
518 // G4cout << "Iteration = " << iter
519 // << " - Step Length = "
520 // << step->GetStepLength()/mm << " mm "
521 // << G4endl;
522
523 //G4cout << gTrack->GetStep()->GetStepLength()/mm
524 // << G4endl;
525
526 G4VParticleChange* dummy;
527 dummy = gammaProcess->PostStepDoIt(*gTrack, *step);
528
529 G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
530
531 // Primary physical quantities
532
533 G4double energyChange = particleChange->GetEnergyChange();
534
535 G4double dedx = initEnergy - energyChange ;
536 G4double dedxNow = dedx / (step->GetStepLength());
537
538 G4ThreeVector eChange =
539 particleChange->CalcMomentum(energyChange,
540 (*particleChange->GetMomentumChange()),
541 particleChange->GetMassChange());
542
543 G4double pxChange = eChange.x();
544 G4double pyChange = eChange.y();
545 G4double pzChange = eChange.z();
546 G4double pChange =
547 std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
548
549 G4double xChange = particleChange->GetPositionChange()->x();
550 G4double yChange = particleChange->GetPositionChange()->y();
551 G4double zChange = particleChange->GetPositionChange()->z();
552 G4double thetaChange = eChange.theta();
553 thetaChange = thetaChange/deg; //conversion in degrees
554
555 G4cout << "---- Primary after the step ---- " << G4endl;
556
557 // G4cout << "Position (x,y,z) = "
558 // << xChange << " "
559 // << yChange << " "
560 // << zChange << " "
561 // << G4endl;
562
563 G4cout << "---- Energy: " << energyChange/MeV << " MeV, "
564 << "(px,py,pz): ("
565 << pxChange/MeV << ","
566 << pyChange/MeV << ","
567 << pzChange/MeV << ") MeV"
568 << G4endl;
569
570 G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
571 // G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
572
573 ntuple1->fill(ntuple1->findColumn("eprimary"),initEnergy/MeV);
574 ntuple1->fill(ntuple1->findColumn("energyf"),energyChange/initEnergy);
575 ntuple1->fill(ntuple1->findColumn("de"),dedx/initEnergy);
576 ntuple1->fill(ntuple1->findColumn("dedx"),dedxNow/(MeV/cm));
577 ntuple1->fill(ntuple1->findColumn("pxch"),pxChange/initEnergy);
578 ntuple1->fill(ntuple1->findColumn("pych"),pyChange/initEnergy);
579 ntuple1->fill(ntuple1->findColumn("pzch"),pzChange/initEnergy);
580 ntuple1->fill(ntuple1->findColumn("pch"),pChange/initEnergy);
581 ntuple1->fill(ntuple1->findColumn("thetach"),thetaChange);
582 ntuple1->addRow();
583
584 // Secondaries physical quantities
585
586 // Secondaries
587 G4cout << " secondaries " <<
588 particleChange->GetNumberOfSecondaries() << G4endl;
589 G4double px_el,py_el,pz_el,p_el,e_el,theta_el,eKin_el;
590
591 for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++)
592 {
593 // The following two items should be filled per event, not
594 // per secondary; filled here just for convenience, to avoid
595 // complicated logic to dump ntuple when there are no secondaries
596
597 G4Track* finalParticle = particleChange->GetSecondary(i) ;
598
599 G4double e = finalParticle->GetTotalEnergy();
600 G4double eKin = finalParticle->GetKineticEnergy();
601 G4double px = (finalParticle->GetMomentum()).x();
602 G4double py = (finalParticle->GetMomentum()).y();
603 G4double pz = (finalParticle->GetMomentum()).z();
604 G4double theta = (finalParticle->GetMomentum()).theta();
605 G4double p = std::sqrt(px*px+py*py+pz*pz);
606 theta = theta/deg; //conversion in degrees
607 if (e > initEnergy)
608 {
609 G4cout << "WARNING: eFinal > eInit " << G4endl;
610 }
611
612 G4String particleName =
613 finalParticle->GetDefinition()->GetParticleName();
614 G4cout << "==== Final "
615 << particleName << " "
616 << "energy: " << e/MeV << " MeV, "
617 << "eKin: " << eKin/MeV << " MeV, "
618 << "(px,py,pz): ("
619 << px/MeV << ","
620 << py/MeV << ","
621 << pz/MeV << ") MeV "
622 << G4endl;
623
624 G4int partType;
625 if (particleName == "e-") {
626 partType = 1;
627 px_el=px;
628 py_el=py;
629 pz_el=pz;
630 p_el=p;
631 e_el=e;
632 theta_el=theta;
633 eKin_el=eKin;
634 }
635 else if (particleName == "gamma")
636 {
637 partType = 2;
638 px_el=px;
639 py_el=py;
640 pz_el=pz;
641 p_el=p;
642 e_el=e;
643 theta_el=theta;
644 eKin_el=eKin;
645 }
646 // Fill the secondaries ntuple
647 // Normalize all to the energy of primary
648 // for gammas initEnergy=initP
649 ntuple2->fill(ntuple2->findColumn("eprimary"),initEnergy);
650 ntuple2->fill(ntuple2->findColumn("px_el"),px_el/initEnergy);
651 ntuple2->fill(ntuple2->findColumn("py_el"),py_el/initEnergy);
652 ntuple2->fill(ntuple2->findColumn("pz_el"),pz_el/initEnergy);
653 ntuple2->fill(ntuple2->findColumn("p_el"),p_el/initEnergy);
654 ntuple2->fill(ntuple2->findColumn("e_el"),e_el/(initEnergy+electron_mass_c2));
655 ntuple2->fill(ntuple2->findColumn("theta_el"),theta_el);
656 ntuple2->fill(ntuple2->findColumn("ekin_el"),eKin_el/initEnergy);
657 ntuple2->fill(ntuple2->findColumn("parType"),(G4double) partType);
658 ntuple2->addRow();
659 particleChange->Clear();
660 delete particleChange->GetSecondary(i);
661 }
662 particleChange->Clear();
663 }
664
665 G4cout << "Iteration number: " << iter << G4endl;
666
667 G4cout << "Committing.............." << G4endl;
668 tree->commit();
669 G4cout << "Closing the tree........" << G4endl;
670 tree->close();
671
672 delete step;
673
674
675 G4cout << "END OF THE MAIN PROGRAM" << G4endl;
676 return 0;
677}
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
Note: See TracBrowser for help on using the repository browser.