source: trunk/source/processes/electromagnetic/lowenergy/test/G4PenelopeRayleighTest.cc @ 1199

Last change on this file since 1199 was 1199, checked in by garnier, 15 years ago

nvx fichiers dans CVS

File size: 19.3 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4PenelopeRayleighTest.cc,v 1.7 2006/06/29 19:44:26 gunter Exp $
28// GEANT4 tag $Name: geant4-09-03-cand-01 $
29//
30// -------------------------------------------------------------------
31//      GEANT 4 class file --- Copyright CERN 1998
32//      CERN Geneva Switzerland
33//
34//
35//      File name:     G4PenelopeRayleighTest.cc
36//
37//      Author:        Francesco Longo
38//
39//      Creation date: 04 january 2001
40//
41//      Modifications: Luciano Pandola  (27 november 2002)
42//                     Adapted in order to test G4PenelopeRayleigh
43//                     Minor modification in n-tuple filling
44//                     Updated analysis to AIDA 3.0
45//
46// -------------------------------------------------------------------
47
48#include "globals.hh"
49#include "G4ios.hh"
50#include <fstream>
51#include <iomanip>
52
53#include "G4ParticleDefinition.hh"
54#include "G4ParticleTypes.hh"
55#include "G4ParticleTable.hh"
56#include "G4Material.hh"
57#include "G4MaterialTable.hh"
58#include "G4VDiscreteProcess.hh"
59#include "G4VProcess.hh"
60#include "G4ProcessManager.hh"
61#include "G4LowEnergyRayleigh.hh"
62#include "G4PenelopeRayleigh.hh"
63#include "G4EnergyLossTables.hh"
64#include "G4VParticleChange.hh"
65#include "G4ParticleChange.hh"
66#include "G4DynamicParticle.hh"
67#include "G4ForceCondition.hh"
68#include "G4RunManager.hh"
69
70#include "G4LowEnergyBremsstrahlung.hh"
71#include "G4LowEnergyIonisation.hh"
72#include "G4eIonisation.hh"
73#include "G4MultipleScattering.hh"
74#include "G4eIonisation.hh"
75#include "G4eBremsstrahlung.hh"
76#include "G4eplusAnnihilation.hh"
77
78#include "G4ComptonScattering.hh"
79#include "G4PhotoElectricEffect.hh"
80
81#include "G4Electron.hh"
82#include "G4Positron.hh"
83#include "G4Gamma.hh"
84
85#include "G4GRSVolume.hh"
86#include "G4Box.hh"
87#include "G4PVPlacement.hh"
88#include "G4Step.hh"
89#include "G4ProductionCutsTable.hh"
90#include "G4MaterialCutsCouple.hh"
91
92#include "G4UnitsTable.hh"
93#include "AIDA/IManagedObject.h"
94
95#include <memory>
96#include "AIDA/IAnalysisFactory.h"
97#include "AIDA/ITreeFactory.h"
98#include "AIDA/ITree.h"
99#include "AIDA/IHistogramFactory.h"
100#include "AIDA/IHistogram1D.h"
101#include "AIDA/IHistogram2D.h"
102#include "AIDA/IHistogram3D.h"
103#include "AIDA/ITupleFactory.h"
104#include "AIDA/ITuple.h"
105
106
107G4int main()
108{
109
110  // Setup
111
112  G4int nIterations = 100000;
113  G4int materialId = 3;
114
115  //G4cout.setf(std::ios::scientific,std::ios::floatfield );
116
117  // -------------------------------------------------------------------
118
119  // ---- HBOOK initialization
120
121  std::auto_ptr< AIDA::IAnalysisFactory > af( AIDA_createAnalysisFactory() );
122  std::auto_ptr< AIDA::ITreeFactory > tf (af->createTreeFactory());
123  std::auto_ptr< AIDA::ITree > tree (tf->create("pen_ray_test.hbook","hbook",false,true));
124  G4cout << "Tree store: " << tree->storeName() << G4endl;
125  std::auto_ptr< AIDA::ITupleFactory > tpf (af->createTupleFactory(*tree));
126  std::auto_ptr< AIDA::IHistogramFactory > hf (af->createHistogramFactory(*tree));
127 
128  // ---- primary ntuple ------
129  AIDA::ITuple* ntuple1 = tpf->create("1","Primary Ntuple","double eprimary,energyf,de,dedx,pxch,pych,pzch,pch,thetach");
130 
131  // ---- secondary ntuple ------
132  //AIDA::ITuple* ntuple2 = tpf->create("2","Secondary Ntuple","double
133  //eprimary,px_el,py_el,pz_el,p_el,e_el,theta_el,ekin_el,px_po,py_po,pz_po,
134  //p_po,e_po,theta_po,ekin_po");
135
136  // ---- table ntuple ------
137  AIDA::ITuple* ntuple3 = tpf->create("3","Mean Free Path Ntuple","double kinen,mfp"); 
138
139  //--------- Materials definition ---------
140  G4Element* SiEl = new G4Element ("SiEl","Si",14.,28.055*g/mole);
141  G4Element* FeEl = new G4Element ("FeEl","Fe",26.,55.58*g/mole);
142  G4Element* CuEl = new G4Element ("CuEl","Cu",29.,63.55*g/mole);
143  G4Element* WEl  = new G4Element ("WEl","W",74.,183.85*g/mole);
144  G4Element* PbEl = new G4Element ("PbEl","Pb",82.,207.19*g/mole);
145  G4Element* UEl  = new G4Element ("UEl","U",92.,238.03*g/mole);
146  G4Element*   H  = new G4Element ("Hydrogen", "H", 1. ,  1.01*g/mole);
147  G4Element*   O  = new G4Element ("Oxygen"  , "O", 8. , 16.00*g/mole);
148  G4Element*   C  = new G4Element ("Carbon"  , "C", 6. , 12.00*g/mole);
149  G4Element*  Cs  = new G4Element ("Cesium"  , "Cs", 55. , 132.905*g/mole);
150  G4Element*   I  = new G4Element ("Iodine"  , "I", 53. , 126.9044*g/mole);
151  G4Element*   N  = new G4Element ("Nitrogen","N",7.,14.0*g/mole);
152
153  G4Material* Si  = new G4Material("Silicon", 2.33*g/cm3,1);
154  Si->AddElement(SiEl,1);
155  G4Material* Fe  = new G4Material("Iron",7.87*g/cm3,1);
156  Fe->AddElement(FeEl,1);
157  G4Material* Cu  = new G4Material("Copper", 8.96*g/cm3,1);
158  Cu->AddElement(CuEl,1);
159  G4Material*  W  = new G4Material("Tungsten",19.30*g/cm3,1);
160  W->AddElement(WEl,1);
161  G4Material* Pb  = new G4Material("Lead",11.35*g/cm3,1);
162  Pb->AddElement(PbEl,1);
163  G4Material*  U  = new G4Material("Uranium",18.95*g/cm3,1);
164  U->AddElement(UEl,1);
165  G4Material*  maO = new G4Material("Oxygen", 1.1*g/cm3,1);
166  maO->AddElement(O,2);
167  G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
168  water->AddElement(H,2);
169  water->AddElement(O,1);
170  G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
171  ethane->AddElement(H,6);
172  ethane->AddElement(C,2);
173  G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
174  csi->AddElement(Cs,1);
175  csi->AddElement(I,1);
176  G4Material* Air = new G4Material
177    ("Air", 1.2929*kg/m3, 2, kStateGas, 300.00*kelvin, 1.0*atmosphere);
178  Air->AddElement(N,0.8);
179  Air->AddElement(O,0.2);
180 
181
182
183  // Interactive set-up
184
185  G4cout << "How many interactions? " << G4endl;
186  G4cin >> nIterations;
187
188  if (nIterations <= 0) G4Exception("Wrong input");
189
190  G4double initEnergy = 10*keV; 
191  G4double initX = 0.; 
192  G4double initY = 0.; 
193  G4double initZ = 1.;
194 
195  G4cout << "Enter the initial particle energy E (MeV)" << G4endl; 
196  G4cin >> initEnergy ;
197
198  initEnergy = initEnergy*MeV;
199 
200  if (initEnergy  <= 0.) G4Exception("Wrong input");
201
202  static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
203
204  G4int nMaterials = G4Material::GetNumberOfMaterials();
205
206  G4cout << "Available materials are: " << G4endl;
207  for (G4int mat = 0; mat < nMaterials; mat++)
208    {
209      G4cout << mat << ") "
210             << (*theMaterialTable)[mat]->GetName()
211             << G4endl;
212    }
213 
214  G4cout << "Which material? " << G4endl;
215  G4cin >> materialId;
216 
217  G4Material* material = (*theMaterialTable)[materialId] ;
218
219  G4cout << "The selected material is: "
220         << material->GetName()
221         << G4endl;
222 
223  G4double dimX = 1*mm;
224  G4double dimY = 1*mm;
225  G4double dimZ = 1*mm;
226 
227  // Geometry
228 
229  G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
230 
231  G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
232                                                      (*theMaterialTable)[materialId],
233                                                      "LFrame", 0, 0, 0);
234  logicalFrame->SetMaterial(material); 
235 
236  G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
237                                                   "PFrame",logicalFrame,0,false,0);
238  G4RunManager* rm = new G4RunManager();
239  G4cout << "World is defined " << G4endl;
240  rm->GeometryHasBeenModified();
241  rm->DefineWorldVolume(physicalFrame);
242  // Particle definitions
243 
244  G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
245  G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
246  G4ParticleDefinition* positron = G4Positron::PositronDefinition();
247 
248  G4ProductionCutsTable* cutsTable = G4ProductionCutsTable::GetProductionCutsTable();
249  G4ProductionCuts* cuts = cutsTable->GetDefaultProductionCuts();
250  G4double cutG=1*micrometer;
251  G4double cutE=1*micrometer;
252  cuts->SetProductionCut(cutG, 0); //gammas
253  cuts->SetProductionCut(cutE, 1); //electrons
254  cuts->SetProductionCut(cutE, 2); //positrons
255  G4cout << "Cuts are defined " << G4endl;
256 
257  //G4Gamma::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
258  //G4Electron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
259  //G4Positron::SetEnergyRange(2.5e-4*MeV,1e5*MeV);
260 
261  cutsTable->UpdateCoupleTable();
262  //cutsTable->DumpCouples();
263  const G4MaterialCutsCouple* theCouple = cutsTable->GetMaterialCutsCouple(material,cuts);
264  // Processes
265 
266 
267  G4int processType;
268  G4cout << "LowEnergy[1] or Penelope [2] Rayleigh?" << G4endl;
269  G4cin >> processType;
270  if ( !(processType == 1 || processType == 2))
271    {
272      G4Exception("Wrong input");
273    }
274
275  G4VDiscreteProcess* gammaProcess;
276
277  if (processType == 1)
278    {
279      gammaProcess = new G4LowEnergyRayleigh();
280      G4cout << "The selected model is Low Energy" << G4endl;
281    }
282  else if (processType == 2)
283    {
284      gammaProcess = new G4PenelopeRayleigh();
285      G4cout << "The selected model is Penelope" << G4endl;
286    }
287 
288  G4VProcess* theeminusMultipleScattering = new G4MultipleScattering();
289  G4VProcess* theeminusIonisation         = new G4eIonisation();
290  G4VProcess* theeminusBremsstrahlung     = new G4eBremsstrahlung();
291  G4VProcess* theeplusMultipleScattering  = new G4MultipleScattering();
292  G4VProcess* theeplusIonisation          = new G4eIonisation();
293  G4VProcess* theeplusBremsstrahlung      = new G4eBremsstrahlung();
294  G4VProcess* theeplusAnnihilation        = new G4eplusAnnihilation();
295
296  //----------------
297  // process manager 
298  //----------------
299
300  // gamma
301 
302  G4ProcessManager* gProcessManager = new G4ProcessManager(gamma);
303  gamma->SetProcessManager(gProcessManager);
304  gProcessManager->AddDiscreteProcess(gammaProcess);
305  G4ForceCondition* condition;  //l'ho fissata a zero! E' onesto??
306
307  //electron
308 
309  G4ProcessManager* eProcessManager = new G4ProcessManager(electron);
310  electron->SetProcessManager(eProcessManager);
311  eProcessManager->AddProcess(theeminusMultipleScattering);
312  eProcessManager->AddProcess(theeminusIonisation);
313  eProcessManager->AddProcess(theeminusBremsstrahlung);
314 
315  //positron
316 
317  G4ProcessManager* pProcessManager = new G4ProcessManager(positron);
318  positron->SetProcessManager(pProcessManager);
319  pProcessManager->AddProcess(theeplusMultipleScattering);
320  pProcessManager->AddProcess(theeplusIonisation);
321  pProcessManager->AddProcess(theeplusBremsstrahlung);
322  pProcessManager->AddProcess(theeplusAnnihilation);
323 
324  //--------------
325  // set ordering   
326  //--------------
327
328
329  eProcessManager->
330    SetProcessOrdering(theeminusMultipleScattering, idxAlongStep,1);
331  eProcessManager->
332    SetProcessOrdering(theeminusIonisation,         idxAlongStep,2);
333     
334  eProcessManager->
335    SetProcessOrdering(theeminusMultipleScattering, idxPostStep,1);
336  eProcessManager->
337    SetProcessOrdering(theeminusIonisation,         idxPostStep,2);
338  eProcessManager->
339    SetProcessOrdering(theeminusBremsstrahlung,     idxPostStep,3);
340
341
342
343  pProcessManager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
344  pProcessManager->
345    SetProcessOrdering(theeplusMultipleScattering, idxAlongStep,1);
346  pProcessManager->
347    SetProcessOrdering(theeplusIonisation,         idxAlongStep,2);
348
349  pProcessManager->
350    SetProcessOrdering(theeplusMultipleScattering, idxPostStep,1);
351  pProcessManager->
352    SetProcessOrdering(theeplusIonisation,         idxPostStep,2);
353  pProcessManager->
354    SetProcessOrdering(theeplusBremsstrahlung,     idxPostStep,3);
355  pProcessManager->
356    SetProcessOrdering(theeplusAnnihilation,       idxPostStep,4);
357 
358  // G4LowEnergyIonisation IonisationProcess;
359  // eProcessManager->AddProcess(&IonisationProcess);
360  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxAlongStep,1);
361  // eProcessManager->SetProcessOrdering(&IonisationProcess,idxPostStep, 1);
362 
363  // G4LowEnergyBremsstrahlung BremstrahlungProcess;
364  // eProcessManager->AddProcess(&BremstrahlungProcess);
365  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxAlongStep,1);
366  // eProcessManager->SetProcessOrdering(&BremstrahlungProcess,idxPostStep, 1);
367 
368  // G4eIonisation IonisationPlusProcess;
369  // pPositronProcessManager->AddProcess(&IonisationPlusProcess);
370  // pProcessManager->
371  //        SetProcessOrdering(&IonisationPlusProcess,idxAlongStep,1);
372  // pProcessManager->SetProcessOrdering(&IonisationPlusProcess,idxPostStep,1);
373
374
375
376  // Create a DynamicParticle 
377 
378  G4double eEnergy = initEnergy*MeV;
379  G4ParticleMomentum eDirection(initX,initY,initZ);
380  G4DynamicParticle dynamicGamma(G4Gamma::Gamma(),eDirection,eEnergy);
381
382  dynamicGamma.DumpInfo(0);
383 
384  // Track
385
386  G4ThreeVector aPosition(0.,0.,0.);
387  G4double aTime = 0. ;
388 
389  G4Track* gTrack = new G4Track(&dynamicGamma,aTime,aPosition);
390
391  G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition);   
392  gTrack->SetTouchableHandle(touche); //verificare!!!!!!!!!!!!
393
394
395  // Step
396
397  G4Step* step = new G4Step(); 
398  step->SetTrack(gTrack);
399
400  G4StepPoint* aPoint = new G4StepPoint();
401  aPoint->SetPosition(aPosition);
402  aPoint->SetMaterial(material);
403  aPoint->SetMaterialCutsCouple(theCouple);
404  G4double safety = 10000.*cm;
405  aPoint->SetSafety(safety);
406  step->SetPreStepPoint(aPoint);
407 
408  // Check applicability
409 
410  if (! (gammaProcess->IsApplicable(*gamma)))
411    {
412      G4Exception("Not Applicable");
413    }
414  else 
415    {
416      G4cout<< "applicability OK" << G4endl;
417    }
418 
419  // Initialize the physics tables (in which material?)
420 
421  gammaProcess->BuildPhysicsTable(*gamma);
422 
423
424  theeminusMultipleScattering->BuildPhysicsTable(*electron);
425  theeminusIonisation->BuildPhysicsTable(*electron);       
426  theeminusBremsstrahlung->BuildPhysicsTable(*electron);
427  theeplusMultipleScattering->BuildPhysicsTable(*positron);
428  theeplusIonisation->BuildPhysicsTable(*positron);
429  theeplusBremsstrahlung->BuildPhysicsTable(*positron);     
430  theeplusAnnihilation->BuildPhysicsTable(*positron) ;
431
432  G4cout<< "table OK" << G4endl;
433  G4Material* apttoMaterial ;
434  G4String MaterialName ;
435 
436  G4double minArg = 100*eV,maxArg = 100*GeV, argStp;
437  const G4int pntNum = 300;
438  G4double Tkin[pntNum+1];
439  G4double meanFreePath=0. ;
440
441  argStp = (std::log10(maxArg)-std::log10(minArg))/pntNum;
442 
443  for(G4int d = 0; d < pntNum+1; d++)
444    { 
445      Tkin[d] = std::pow(10,(std::log10(minArg) + d*argStp));
446    }
447 
448  G4double sti = 1.*mm;
449  step->SetStepLength(sti);
450 
451  //  for ( G4int J = 0 ; J < nMaterials ; J++ )
452  //  {
453  apttoMaterial = (*theMaterialTable)[materialId] ;
454  MaterialName  = apttoMaterial->GetName() ;
455  logicalFrame->SetMaterial(apttoMaterial); 
456 
457  gTrack->SetStep(step);
458
459
460  G4LowEnergyRayleigh* gammaLowEProcess2 = (G4LowEnergyRayleigh*) gammaProcess;
461  G4PenelopeRayleigh* gammaLowEProcess = (G4PenelopeRayleigh*) gammaProcess;
462 
463  for (G4int i=0 ; i<pntNum; i++)
464    {
465      dynamicGamma.SetKineticEnergy(Tkin[i]);
466      if (processType == 1)
467        {
468          meanFreePath=gammaLowEProcess2
469            ->DumpMeanFreePath(*gTrack, sti, condition);
470        }
471      else if (processType == 2)
472        {
473          meanFreePath=gammaLowEProcess
474            ->DumpMeanFreePath(*gTrack, sti, condition);
475        }
476
477      ntuple3->fill(ntuple3->findColumn("kinen"),std::log10(Tkin[i]));
478      ntuple3->fill(ntuple3->findColumn("mfp"),std::log10(meanFreePath/cm));
479      ntuple3->addRow();
480      // if (Tkin[i]<10*MeV)
481//      G4cout << "Mean free path @" << Tkin[i] << ": " << meanFreePath/cm << G4endl;
482    }
483  G4cout << "Mean Free Path OK" << G4endl;
484 
485  // --------- Test the DoIt
486 
487  G4cout << "DoIt in " << material->GetName() << G4endl;
488
489
490  dynamicGamma.SetKineticEnergy(eEnergy);
491  G4int iter;
492  for (iter=0; iter<nIterations; iter++)
493    {
494     
495      step->SetStepLength(1*micrometer);
496     
497      G4cout  <<  "Iteration = "  <<  iter
498              << "  -  Step Length = " 
499              << step->GetStepLength()/mm << " mm "
500              << G4endl;
501     
502   
503      gTrack->SetStep(step); 
504     
505     
506      G4VParticleChange* dummy;
507      dummy = gammaProcess->PostStepDoIt(*gTrack, *step);
508
509      G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
510     
511      // Primary physical quantities
512     
513      G4double energyChange = particleChange->GetEnergyChange();
514     
515      G4double dedx = initEnergy - energyChange ;
516      G4double dedxNow = dedx / (step->GetStepLength());
517     
518      G4ThreeVector eChange = 
519        particleChange->CalcMomentum(energyChange,
520                                     (*particleChange->GetMomentumChange()),
521                                     particleChange->GetMassChange());
522     
523      G4double pxChange  = eChange.x();
524      G4double pyChange  = eChange.y();
525      G4double pzChange  = eChange.z();
526      G4double pChange   = 
527        std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
528      G4double thetaChange = eChange.theta();
529      thetaChange = thetaChange/deg; //conversion in degrees
530      G4double xChange = particleChange->GetPositionChange()->x();
531      G4double yChange = particleChange->GetPositionChange()->y();
532      G4double zChange = particleChange->GetPositionChange()->z();
533      //G4double thetaChange = particleChange->GetPositionChange()->theta();
534     
535      G4cout << "---- Primary after the step ---- " << G4endl;
536 
537            G4cout << "Position (x,y,z) = " 
538             << xChange << "  " 
539             << yChange << "   " 
540             << zChange << "   " 
541             << G4endl;
542
543      G4cout << "---- Energy: " << energyChange/MeV << " MeV,  " 
544             << "(px,py,pz): ("
545             << pxChange/MeV << ","
546             << pyChange/MeV << "," 
547             << pzChange/MeV << ") MeV"
548             << G4endl;
549     
550      G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
551      //      G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
552 
553       ntuple1->fill(ntuple1->findColumn("eprimary"),initEnergy/MeV);
554       ntuple1->fill(ntuple1->findColumn("energyf"),energyChange/initEnergy);
555       ntuple1->fill(ntuple1->findColumn("de"),dedx/MeV);
556       ntuple1->fill(ntuple1->findColumn("dedx"),dedxNow/(MeV/cm));
557       ntuple1->fill(ntuple1->findColumn("pxch"),pxChange/initEnergy);
558       ntuple1->fill(ntuple1->findColumn("pych"),pyChange/initEnergy);
559       ntuple1->fill(ntuple1->findColumn("pzch"),pzChange/initEnergy);
560       ntuple1->fill(ntuple1->findColumn("pch"),pChange/initEnergy);
561       ntuple1->fill(ntuple1->findColumn("thetach"),thetaChange);
562       ntuple1->addRow();
563     
564    }
565 
566  G4cout  << "Iteration number: "  <<  iter << G4endl;
567 
568  G4cout << "Committing.............." << G4endl;
569  tree->commit();
570  G4cout << "Closing the tree........" << G4endl;
571  tree->close();
572 
573  delete step;
574
575
576  G4cout << "END OF THE MAIN PROGRAM" << G4endl;
577  return 0;
578}
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
Note: See TracBrowser for help on using the repository browser.