// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4PhotoelectricTest.cc,v 1.11 2006/06/29 19:44:30 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // ------------------------------------------------------------------- // GEANT 4 class file --- Copyright CERN 1998 // CERN Geneva Switzerland // // // File name: G4PhotoelectricTest // // Author: Maria Grazia Pia // // Creation date: 1 May 2001 // // Modifications: // // ------------------------------------------------------------------- #include "globals.hh" #include "G4ios.hh" #include #include #include "G4Material.hh" #include "G4VContinuousDiscreteProcess.hh" #include "G4ProcessManager.hh" #include "G4LowEnergyBremsstrahlung.hh" #include "G4eBremsstrahlung.hh" #include "G4LowEnergyPhotoElectric.hh" #include "G4PhotoElectricEffect.hh" #include "G4LowEnergyIonisation.hh" #include "G4eIonisation.hh" #include "G4VeLowEnergyLoss.hh" #include "G4EnergyLossTables.hh" #include "G4VParticleChange.hh" #include "G4ParticleChange.hh" #include "G4DynamicParticle.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Gamma.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4Step.hh" #include "G4GRSVolume.hh" #include "G4UnitsTable.hh" #include "CLHEP/Hist/TupleManager.h" #include "CLHEP/Hist/HBookFile.h" #include "CLHEP/Hist/Histogram.h" #include "CLHEP/Hist/Tuple.h" HepTupleManager* hbookManager; int main() { // Setup G4int nIterations = 100000; G4int materialId = 3; G4cout.setf( ios::scientific, ios::floatfield ); // ------------------------------------------------------------------- // ---- HBOOK initialization hbookManager = new HBookFile("photoeltest.hbook", 58); assert (hbookManager != 0); // ---- Book a histogram and ntuples G4cout<<"Hbook file name: "<<((HBookFile*) hbookManager)->filename()<ntuple("Primary Ntuple"); assert (ntuple1 != 0); // ---- secondary ntuple ------ HepTuple* ntuple2 = hbookManager->ntuple("Secondary Ntuple"); assert (ntuple2 != 0); // ---- secondaries histos ---- HepHistogram* hEKin; hEKin = hbookManager->histogram("Kinetic Energy", 100,0.,200.); assert (hEKin != 0); HepHistogram* hP; hP = hbookManager->histogram("Momentum", 100,0.,1000.); assert (hP != 0); HepHistogram* hNSec; hNSec = hbookManager->histogram("Number of secondaries", 40,0.,40.); assert (hNSec != 0); HepHistogram* hDebug; hDebug = hbookManager->histogram("Debug", 100,0.,200.); assert (hDebug != 0); //--------- Materials definition --------- G4Material* Be = new G4Material("Beryllium", 4., 9.01*g/mole, 1.848*g/cm3); G4Material* Graphite = new G4Material("Graphite",6., 12.00*g/mole, 2.265*g/cm3 ); G4Material* Al = new G4Material("Aluminium", 13., 26.98*g/mole, 2.7 *g/cm3); G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3); G4Material* LAr = new G4Material("LArgon", 18., 39.95*g/mole, 1.393*g/cm3); G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3); G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3); G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3); G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3); G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3); G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole); G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole); G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole); G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole); G4Element* I = new G4Element ("Iodide" , "I", 53. , 126.9044*g/mole); G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3); G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2); water->AddElement(H,2); water->AddElement(O,1); G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2); ethane->AddElement(H,6); ethane->AddElement(C,2); G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2); csi->AddElement(Cs,1); csi->AddElement(I,1); // Interactive set-up G4cout << "How many interactions? " << G4endl; G4cin >> nIterations; if (nIterations <= 0) G4Exception("Wrong input"); G4double initEnergy = 1*MeV; G4double initX = 0.; G4double initY = 0.; G4double initZ = 1.; G4cout << "Enter the initial particle energy E (MeV)" << G4endl; G4cin >> initEnergy ; initEnergy = initEnergy * MeV; if (initEnergy <= 0.) G4Exception("Wrong input"); static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); G4int nMaterials = G4Material::GetNumberOfMaterials(); G4cout << "Available materials are: " << G4endl; for (G4int mat = 0; mat < nMaterials; mat++) { G4cout << mat << ") " << (*theMaterialTable)[mat]->GetName() << G4endl; } G4cout << "Which material? " << G4endl; G4cin >> materialId; G4Material* material = (*theMaterialTable)[materialId] ; G4cout << "The selected material is: " << material->GetName() << G4endl; G4double dimX = 1*mm; G4double dimY = 1*mm; G4double dimZ = 1*mm; // Geometry G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ); G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame, (*theMaterialTable)[materialId], "LFrame", 0, 0, 0); logicalFrame->SetMaterial(material); G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(), "PFrame",logicalFrame,0,false,0); // Particle definitions G4ParticleDefinition* gamma = G4Gamma::GammaDefinition(); G4ParticleDefinition* electron = G4Electron::ElectronDefinition(); G4ParticleDefinition* positron = G4Positron::PositronDefinition(); gamma->SetCuts(1e-3*mm); electron->SetCuts(1e-3*mm); positron->SetCuts(1e-3*mm); // Processes G4int processType; G4cout << "LowEnergy [1] or Standard [2] Bremsstrahlung?" << G4endl; cin >> processType; if ( !(processType == 1 || processType == 2)) { G4Exception("Wrong input"); } G4VContinuousDiscreteProcess* bremProcess; G4VContinuousDiscreteProcess* ioniProcess; if (processType == 1) { bremProcess = new G4LowEnergyBremsstrahlung; ioniProcess = new G4LowEnergyIonisation; } else { bremProcess = new G4eBremsstrahlung; ioniProcess = new G4eIonisation; } G4ProcessManager* eProcessManager = new G4ProcessManager(electron); electron->SetProcessManager(eProcessManager); eProcessManager->AddProcess(bremProcess); G4ProcessManager* positronProcessManager = new G4ProcessManager(positron); positron->SetProcessManager(positronProcessManager); positronProcessManager->AddProcess(bremProcess); // Initialize the physics tables bremProcess->BuildPhysicsTable(*electron); ioniProcess->BuildPhysicsTable(*electron); // Photon process G4VDiscreteProcess* photonProcess; if (processType == 1) { photonProcess = new G4LowEnergyPhotoElectric; } else { photonProcess = new G4PhotoElectricEffect; } G4ProcessManager* gProcessManager = new G4ProcessManager(gamma); gamma->SetProcessManager(gProcessManager); gProcessManager->AddProcess(photonProcess); photonProcess->BuildPhysicsTable(*gamma); // Create a DynamicParticle G4double gEnergy = initEnergy*MeV; G4ParticleMomentum gDirection(initX,initY,initZ); G4DynamicParticle dynamicPhoton(G4Gamma::Gamma(),gDirection,gEnergy); // Track G4ThreeVector aPosition(0.,0.,0.); G4ThreeVector newPosition(0.,0.,1.*mm); G4double aTime = 0. ; G4Track* gTrack = new G4Track(&dynamicPhoton,aTime,aPosition); // do I really need this? G4GRSVolume* touche = new G4GRSVolume(physicalFrame, 0, aPosition); gTrack->SetTouchable(touche); // Step G4Step* step = new G4Step(); step->SetTrack(gTrack); G4StepPoint* aPoint = new G4StepPoint(); aPoint->SetPosition(aPosition); aPoint->SetMaterial(material); G4double safety = 10000.*cm; aPoint->SetSafety(safety); step->SetPreStepPoint(aPoint); G4StepPoint* newPoint = new G4StepPoint(); newPoint->SetPosition(newPosition); newPoint->SetMaterial(material); step->SetPostStepPoint(newPoint); // Check applicability if (! (photonProcess->IsApplicable(*gamma))) { G4Exception("Not Applicable"); } // --------- Test the DoIt G4cout << "DoIt in material " << material->GetName() << G4endl; for (G4int iter=0; iterSetStepLength(1*micrometer); gTrack->SetStep(step); G4cout << "Iteration = " << iter << " - Step Length = " << step->GetStepLength()/mm << " mm " << G4endl; G4VParticleChange* dummy; dummy = photonProcess->PostStepDoIt(*gTrack, *step); G4ParticleChange* particleChange = (G4ParticleChange*) dummy; // Primary physical quantities G4double energyChange = particleChange->GetEnergyChange(); G4double dedx = initEnergy - energyChange ; G4double dedxNow = dedx / (step->GetStepLength()); G4ThreeVector eChange = particleChange->CalcMomentum(energyChange, (*particleChange->GetMomentumChange()), particleChange->GetMassChange()); G4double pxChange = eChange.x(); G4double pyChange = eChange.y(); G4double pzChange = eChange.z(); G4double pChange = std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange); G4double xChange = particleChange->GetPositionChange()->x(); G4double yChange = particleChange->GetPositionChange()->y(); G4double zChange = particleChange->GetPositionChange()->z(); G4double thetaChange = particleChange->GetPositionChange()->theta(); G4cout << "---- Primary after the step ---- " << G4endl; // G4cout << "Position (x,y,z) = " // << xChange << " " // << yChange << " " // << zChange << " " // << G4endl; G4cout << "---- Energy: " << energyChange/MeV << " MeV, " << "(px,py,pz): (" << pxChange/MeV << "," << pyChange/MeV << "," << pzChange/MeV << ") MeV" << G4endl; G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl; // G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl; // Secondaries ntuple1->column("eprimary", initEnergy); ntuple1->column("energyf", energyChange); ntuple1->column("de", dedx); ntuple1->column("dedx", dedxNow); ntuple1->column("pxch", xChange); ntuple1->column("pych", pyChange); ntuple1->column("pzch", pzChange); ntuple1->column("pch", zChange); ntuple1->column("thetach", thetaChange); // Secondaries physical quantities hNSec->accumulate(particleChange->GetNumberOfSecondaries()); hDebug->accumulate(particleChange->GetLocalEnergyDeposit()); G4int nElectrons = 0; G4int nPositrons = 0; G4int nPhotons = 0; for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) { // The following two items should be filled per event, not // per secondary; filled here just for convenience, to avoid // complicated logic to dump ntuple when there are no secondaries G4Track* finalParticle = particleChange->GetSecondary(i) ; G4double e = finalParticle->GetTotalEnergy(); G4double eKin = finalParticle->GetKineticEnergy(); G4double px = (finalParticle->GetMomentum()).x(); G4double py = (finalParticle->GetMomentum()).y(); G4double pz = (finalParticle->GetMomentum()).z(); G4double theta = (finalParticle->GetMomentum()).theta(); G4double p = std::sqrt(px*px+py*py+pz*pz); if (e > initEnergy) { G4cout << "WARNING: eFinal > eInit " << G4endl; // << e // << " > " initEnergy } G4String particleName = finalParticle->GetDefinition()->GetParticleName(); G4cout << "==== Final " << particleName << " " << "energy: " << e/MeV << " MeV, " << "eKin: " << eKin/MeV << " MeV, " << "(px,py,pz): (" << px/MeV << "," << py/MeV << "," << pz/MeV << ") MeV " << G4endl; hEKin->accumulate(eKin); hP->accumulate(p); G4int partType = 0; if (particleName == "e-") { partType = 1; nElectrons++; } else if (particleName == "e+") { partType = 2; nPositrons++; } else if (particleName == "gamma") { partType = 3; nPhotons++; } // Fill the secondaries ntuple ntuple2->column("eprimary",initEnergy); ntuple2->column("px", px); ntuple2->column("py", py); ntuple2->column("pz", pz); ntuple2->column("p", p); ntuple2->column("e", e); ntuple2->column("theta", theta); ntuple2->column("ekin", eKin); ntuple2->column("type", partType); ntuple2->dumpData(); delete particleChange->GetSecondary(i); } ntuple1->column("nelectrons",nElectrons); ntuple1->column("npositrons",nPositrons); ntuple1->column("nphotons",nPhotons); ntuple1->dumpData(); particleChange->Clear(); } cout << "Iteration number: " << G4endl; hbookManager->write(); delete hbookManager; // delete materials and elements // delete Be; // delete Graphite; // delete Al; // delete Si; // delete LAr; // delete Fe; // delete Cu; // delete W; // delete Pb; // delete U; // delete H; // delete maO; // delete C; // delete Cs; // delete I; // delete O; // delete water; // delete ethane; // delete csi; // delete step; // delete touche; // delete Be; // delete Graphite; // delete Al; // delete Si; // delete LAr; // delete Fe; // delete Cu; // delete W; // delete Pb; // delete U; // delete H; // delete maO; // delete C; // delete Cs; // delete I; // delete O; // delete water; // delete ethane; // delete csi; delete step; // delete touche; cout << "END OF THE MAIN PROGRAM" << G4endl; }