source: trunk/source/processes/electromagnetic/lowenergy/test/G4RayleighTest.cc@ 1350

Last change on this file since 1350 was 1350, checked in by garnier, 15 years ago

update to last version 4.9.4

File size: 15.2 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4RayleighTest.cc,v 1.10 2006/06/29 19:44:32 gunter Exp $
28// GEANT4 tag $Name: geant4-09-04-ref-00 $
29//
30// -------------------------------------------------------------------
31// GEANT 4 class file --- Copyright CERN 1998
32// CERN Geneva Switzerland
33//
34//
35// File name: G4RayleighTest
36//
37// Author: Maria Grazia Pia
38//
39// Creation date: 2 May 2001
40//
41// Modifications:
42//
43// -------------------------------------------------------------------
44
45#include "globals.hh"
46#include "G4ios.hh"
47#include <fstream>
48#include <iomanip>
49
50#include "G4Material.hh"
51#include "G4VContinuousDiscreteProcess.hh"
52#include "G4ProcessManager.hh"
53#include "G4LowEnergyBremsstrahlung.hh"
54#include "G4eBremsstrahlung.hh"
55#include "G4LowEnergyRayleigh.hh"
56#include "G4LowEnergyIonisation.hh"
57#include "G4eIonisation.hh"
58#include "G4VeLowEnergyLoss.hh"
59#include "G4EnergyLossTables.hh"
60#include "G4VParticleChange.hh"
61#include "G4ParticleChange.hh"
62#include "G4DynamicParticle.hh"
63#include "G4Electron.hh"
64#include "G4Positron.hh"
65#include "G4Gamma.hh"
66
67#include "G4Box.hh"
68#include "G4PVPlacement.hh"
69
70#include "G4Step.hh"
71#include "G4GRSVolume.hh"
72
73#include "G4UnitsTable.hh"
74#include "CLHEP/Hist/TupleManager.h"
75#include "CLHEP/Hist/HBookFile.h"
76#include "CLHEP/Hist/Histogram.h"
77#include "CLHEP/Hist/Tuple.h"
78
79HepTupleManager* hbookManager;
80
81int main()
82{
83
84 // Setup
85
86 G4int nIterations = 100000;
87 G4int materialId = 3;
88 G4int test = 0;
89
90 G4cout.setf( ios::scientific, ios::floatfield );
91
92 // -------------------------------------------------------------------
93
94 // ---- HBOOK initialization
95
96
97 hbookManager = new HBookFile("rayleightest.hbook", 58);
98 assert (hbookManager != 0);
99
100 // ---- Book a histogram and ntuples
101 G4cout<<"Hbook file name: "<<((HBookFile*) hbookManager)->filename()<<endl;
102
103 // ---- primary ntuple ------
104 HepTuple* ntuple1 = hbookManager->ntuple("Primary Ntuple");
105 assert (ntuple1 != 0);
106
107 // ---- secondary ntuple ------
108 HepTuple* ntuple2 = hbookManager->ntuple("Secondary Ntuple");
109 assert (ntuple2 != 0);
110
111 // ---- secondaries histos ----
112 HepHistogram* hEKin;
113 hEKin = hbookManager->histogram("Kinetic Energy", 100,0.,200.);
114 assert (hEKin != 0);
115
116 HepHistogram* hP;
117 hP = hbookManager->histogram("Momentum", 100,0.,1000.);
118 assert (hP != 0);
119
120 HepHistogram* hNSec;
121 hNSec = hbookManager->histogram("Number of secondaries", 40,0.,40.);
122 assert (hNSec != 0);
123
124 HepHistogram* hDebug;
125 hDebug = hbookManager->histogram("Debug", 100,0.,200.);
126 assert (hDebug != 0);
127
128
129 //--------- Materials definition ---------
130
131 G4Material* Be = new G4Material("Beryllium", 4., 9.01*g/mole, 1.848*g/cm3);
132 G4Material* Graphite = new G4Material("Graphite",6., 12.00*g/mole, 2.265*g/cm3 );
133 G4Material* Al = new G4Material("Aluminium", 13., 26.98*g/mole, 2.7 *g/cm3);
134 G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3);
135 G4Material* LAr = new G4Material("LArgon", 18., 39.95*g/mole, 1.393*g/cm3);
136 G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3);
137 G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3);
138 G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3);
139 G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3);
140 G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3);
141
142 G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole);
143 G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole);
144 G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole);
145 G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole);
146 G4Element* I = new G4Element ("Iodide" , "I", 53. , 126.9044*g/mole);
147
148 G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3);
149
150 G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2);
151 water->AddElement(H,2);
152 water->AddElement(O,1);
153
154 G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2);
155 ethane->AddElement(H,6);
156 ethane->AddElement(C,2);
157
158 G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2);
159 csi->AddElement(Cs,1);
160 csi->AddElement(I,1);
161
162
163 // Interactive set-up
164
165 G4cout << "How many interactions? " << G4endl;
166 G4cin >> nIterations;
167
168 if (nIterations <= 0) G4Exception("Wrong input");
169
170 G4double initEnergy = 1*MeV;
171 G4double initX = 0.;
172 G4double initY = 0.;
173 G4double initZ = 1.;
174
175 G4cout << "Enter the initial particle energy E (MeV)" << G4endl;
176 G4cin >> initEnergy ;
177
178 initEnergy = initEnergy * MeV;
179
180 if (initEnergy <= 0.) G4Exception("Wrong input");
181
182 static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
183
184 G4int nMaterials = G4Material::GetNumberOfMaterials();
185
186 G4cout << "Available materials are: " << G4endl;
187 for (G4int mat = 0; mat < nMaterials; mat++)
188 {
189 G4cout << mat << ") "
190 << (*theMaterialTable)[mat]->GetName()
191 << G4endl;
192 }
193
194 G4cout << "Which material? " << G4endl;
195 G4cin >> materialId;
196
197 G4Material* material = (*theMaterialTable)[materialId] ;
198
199 G4cout << "The selected material is: "
200 << material->GetName()
201 << G4endl;
202
203 G4double dimX = 1*mm;
204 G4double dimY = 1*mm;
205 G4double dimZ = 1*mm;
206
207 // Geometry
208
209 G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ);
210
211 G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame,
212 (*theMaterialTable)[materialId],
213 "LFrame", 0, 0, 0);
214 logicalFrame->SetMaterial(material);
215
216 G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(),
217 "PFrame",logicalFrame,0,false,0);
218
219 // Particle definitions
220
221 G4ParticleDefinition* gamma = G4Gamma::GammaDefinition();
222 G4ParticleDefinition* electron = G4Electron::ElectronDefinition();
223 G4ParticleDefinition* positron = G4Positron::PositronDefinition();
224
225 gamma->SetCuts(1e-3*mm);
226 electron->SetCuts(1e-3*mm);
227 positron->SetCuts(1e-3*mm);
228
229 // Processes
230
231 G4VContinuousDiscreteProcess* bremProcess = new G4LowEnergyBremsstrahlung;
232 G4VContinuousDiscreteProcess* ioniProcess = new G4LowEnergyIonisation;
233
234 G4ProcessManager* eProcessManager = new G4ProcessManager(electron);
235 electron->SetProcessManager(eProcessManager);
236 eProcessManager->AddProcess(bremProcess);
237
238 G4ProcessManager* positronProcessManager = new G4ProcessManager(positron);
239 positron->SetProcessManager(positronProcessManager);
240 positronProcessManager->AddProcess(bremProcess);
241
242 // Initialize the physics tables
243 bremProcess->BuildPhysicsTable(*electron);
244 ioniProcess->BuildPhysicsTable(*electron);
245
246 // Photon process
247 G4VDiscreteProcess* photonProcess = new G4LowEnergyRayleigh;
248
249 G4ProcessManager* gProcessManager = new G4ProcessManager(gamma);
250 gamma->SetProcessManager(gProcessManager);
251 gProcessManager->AddProcess(photonProcess);
252 photonProcess->BuildPhysicsTable(*gamma);
253
254 // Create a DynamicParticle
255
256 G4double gEnergy = initEnergy*MeV;
257 G4ParticleMomentum gDirection(initX,initY,initZ);
258 G4DynamicParticle dynamicPhoton(G4Gamma::Gamma(),gDirection,gEnergy);
259
260 // Track
261
262 G4ThreeVector aPosition(0.,0.,0.);
263 G4ThreeVector newPosition(0.,0.,1.*mm);
264 G4double aTime = 0. ;
265
266 G4Track* gTrack = new G4Track(&dynamicPhoton,aTime,aPosition);
267
268 // do I really need this?
269
270 G4GRSVolume* touche = new G4GRSVolume(physicalFrame, 0, aPosition);
271 gTrack->SetTouchable(touche);
272
273 // Step
274
275 G4Step* step = new G4Step();
276 step->SetTrack(gTrack);
277
278 G4StepPoint* aPoint = new G4StepPoint();
279 aPoint->SetPosition(aPosition);
280 aPoint->SetMaterial(material);
281 G4double safety = 10000.*cm;
282 aPoint->SetSafety(safety);
283 step->SetPreStepPoint(aPoint);
284 G4StepPoint* newPoint = new G4StepPoint();
285 newPoint->SetPosition(newPosition);
286 newPoint->SetMaterial(material);
287 step->SetPostStepPoint(newPoint);
288
289 // Check applicability
290
291 if (! (photonProcess->IsApplicable(*gamma)))
292 {
293 G4Exception("Not Applicable");
294 }
295
296 // --------- Test the DoIt
297
298 G4cout << "DoIt in material " << material->GetName() << G4endl;
299
300 G4int iteration = 0;
301
302
303 for (G4int iter=0; iter<nIterations; iter++)
304 {
305 step->SetStepLength(1*micrometer);
306
307 gTrack->SetStep(step);
308
309 G4cout << "Iteration = " << iter
310 << " - Step Length = "
311 << step->GetStepLength()/mm << " mm "
312 << G4endl;
313
314 G4VParticleChange* dummy;
315 dummy = photonProcess->PostStepDoIt(*gTrack, *step);
316
317 G4ParticleChange* particleChange = (G4ParticleChange*) dummy;
318
319 // Primary physical quantities
320
321 G4double energyChange = particleChange->GetEnergyChange();
322 G4double dedx = initEnergy - energyChange ;
323 G4double dedxNow = dedx / (step->GetStepLength());
324
325 G4ThreeVector eChange = particleChange->CalcMomentum(energyChange,
326 (*particleChange->GetMomentumChange()),
327 particleChange->GetMassChange());
328
329 G4double pxChange = eChange.x();
330 G4double pyChange = eChange.y();
331 G4double pzChange = eChange.z();
332 G4double pChange = std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange);
333
334 G4double xChange = particleChange->GetPositionChange()->x();
335 G4double yChange = particleChange->GetPositionChange()->y();
336 G4double zChange = particleChange->GetPositionChange()->z();
337 G4double thetaChange = particleChange->GetPositionChange()->theta();
338
339 G4cout << "---- Primary after the step ---- " << G4endl;
340
341 // G4cout << "Position (x,y,z) = "
342 // << xChange << " "
343 // << yChange << " "
344 // << zChange << " "
345 // << G4endl;
346
347 G4cout << "---- Energy: " << energyChange/MeV << " MeV, "
348 << "(px,py,pz): ("
349 << pxChange/MeV << ","
350 << pyChange/MeV << ","
351 << pzChange/MeV << ") MeV"
352 << G4endl;
353
354 G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl;
355 // G4cout << "Stopping power (dE/dx)=" << dedxNow << G4endl;
356
357 // Secondaries
358
359 ntuple1->column("eprimary", initEnergy);
360 ntuple1->column("energyf", energyChange);
361 ntuple1->column("de", dedx);
362 ntuple1->column("dedx", dedxNow);
363 ntuple1->column("pxch", xChange);
364 ntuple1->column("pych", pyChange);
365 ntuple1->column("pzch", pzChange);
366 ntuple1->column("pch", zChange);
367 ntuple1->column("thetach", thetaChange);
368
369 // Secondaries physical quantities
370
371 hNSec->accumulate(particleChange->GetNumberOfSecondaries());
372 hDebug->accumulate(particleChange->GetLocalEnergyDeposit());
373
374 G4int nElectrons = 0;
375 G4int nPositrons = 0;
376 G4int nPhotons = 0;
377
378 for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++)
379 {
380 // The following two items should be filled per event, not
381 // per secondary; filled here just for convenience, to avoid
382 // complicated logic to dump ntuple when there are no secondaries
383
384 G4Track* finalParticle = particleChange->GetSecondary(i) ;
385
386 G4double e = finalParticle->GetTotalEnergy();
387 G4double eKin = finalParticle->GetKineticEnergy();
388 G4double px = (finalParticle->GetMomentum()).x();
389 G4double py = (finalParticle->GetMomentum()).y();
390 G4double pz = (finalParticle->GetMomentum()).z();
391 G4double theta = (finalParticle->GetMomentum()).theta();
392 G4double p = std::sqrt(px*px+py*py+pz*pz);
393
394 if (e > initEnergy)
395 {
396 G4cout << "WARNING: eFinal > eInit " << G4endl;
397 // << e
398 // << " > " initEnergy
399
400 }
401
402 G4String particleName = finalParticle->GetDefinition()->GetParticleName();
403 G4cout << "==== Final "
404 << particleName << " "
405 << "energy: " << e/MeV << " MeV, "
406 << "eKin: " << eKin/MeV << " MeV, "
407 << "(px,py,pz): ("
408 << px/MeV << ","
409 << py/MeV << ","
410 << pz/MeV << ") MeV "
411 << G4endl;
412
413 hEKin->accumulate(eKin);
414 hP->accumulate(p);
415
416 G4int partType = 0;
417 if (particleName == "e-")
418 {
419 partType = 1;
420 nElectrons++;
421 }
422 else if (particleName == "e+")
423 {
424 partType = 2;
425 nPositrons++;
426 }
427 else if (particleName == "gamma")
428 {
429 partType = 3;
430 nPhotons++;
431 }
432 // Fill the secondaries ntuple
433 ntuple2->column("eprimary",initEnergy);
434 ntuple2->column("px", px);
435 ntuple2->column("py", py);
436 ntuple2->column("pz", pz);
437 ntuple2->column("p", p);
438 ntuple2->column("e", e);
439 ntuple2->column("theta", theta);
440 ntuple2->column("ekin", eKin);
441 ntuple2->column("type", partType);
442
443 ntuple2->dumpData();
444
445 delete particleChange->GetSecondary(i);
446 }
447
448 ntuple1->column("nelectrons",nElectrons);
449 ntuple1->column("npositrons",nPositrons);
450 ntuple1->column("nphotons",nPhotons);
451 ntuple1->dumpData();
452
453 particleChange->Clear();
454
455 }
456
457
458 cout << "Iteration number: " << G4endl;
459 hbookManager->write();
460 delete hbookManager;
461
462 // delete materials and elements
463 // delete Be;
464 // delete Graphite;
465 // delete Al;
466 // delete Si;
467 // delete LAr;
468 // delete Fe;
469 // delete Cu;
470 // delete W;
471 // delete Pb;
472 // delete U;
473 // delete H;
474 // delete maO;
475 // delete C;
476 // delete Cs;
477 // delete I;
478 // delete O;
479 // delete water;
480 // delete ethane;
481 // delete csi;
482 // delete step;
483 // delete touche;
484 // delete Be;
485 // delete Graphite;
486 // delete Al;
487 // delete Si;
488 // delete LAr;
489 // delete Fe;
490 // delete Cu;
491 // delete W;
492 // delete Pb;
493 // delete U;
494 // delete H;
495 // delete maO;
496 // delete C;
497 // delete Cs;
498 // delete I;
499 // delete O;
500 // delete water;
501 // delete ethane;
502 // delete csi;
503 delete step;
504 // delete touche;
505
506 cout << "END OF THE MAIN PROGRAM" << G4endl;
507}
508
509
510
511
512
513
514
515
516
517
518
519
Note: See TracBrowser for help on using the repository browser.