// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4eIonisationTest.cc,v 1.16 2006/06/29 19:44:40 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-ref-00 $ // // ------------------------------------------------------------------- // GEANT 4 class file --- Copyright CERN 1998 // CERN Geneva Switzerland // // // File name: G4IonisationTest // // Author: Maria Grazia Pia // // Creation date: 20 June 2000 // // Modifications: // // ------------------------------------------------------------------- #include "globals.hh" #include "G4ios.hh" #include #include #include "G4Material.hh" #include "G4VContinuousDiscreteProcess.hh" #include "G4ProcessManager.hh" #include "G4LowEnergyIonisationVI.hh" #include "G4eIonisation.hh" #include "G4EnergyLossTables.hh" #include "G4VParticleChange.hh" #include "G4ParticleChange.hh" #include "G4DynamicParticle.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Gamma.hh" #include "G4Proton.hh" #include "G4AntiProton.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4Step.hh" #include "G4GRSVolume.hh" #include "G4UnitsTable.hh" // New Histogramming (from AIDA and Anaphe): #include "Interfaces/IHistoManager.h" #include "Interfaces/IHistogram1D.h" #include "Interfaces/IHistogram2D.h" // For NtupleTag from Anaphe #include "NtupleTag/LizardNTupleFactory.h" using namespace Lizard; int main() { // Setup G4int nIterations = 100000; G4int materialId = 3; G4int test = 0; G4cout.setf( ios::scientific, ios::floatfield ); // ------------------------------------------------------------------- // ---- HBOOK initialization IHistoManager *hbookManager = createIHistoManager(); assert (hbookManager != 0); hbookManager->selectStore("ioni.hbook"); // Create a nTuple factory: NTupleFactory* factory = createNTupleFactory(); // ---- primary ntuple ------ // ntuple-name is composition of :: NTuple* ntuple1 = factory->createC( "ioni1.hbook::1" ); // Check if successful assert (ntuple1 != 0); // ---- secondary ntuple ------ NTuple* ntuple2 = factory->createC( "ioni2.hbook::2" ); assert (ntuple2 != 0); // ---- secondaries histos ---- IHistogram1D* hEKin; hEKin = hbookManager->create1D("10","Kinetic Energy", 100,0.,10.); IHistogram1D* hP; hP = hbookManager->create1D("20","Momentum", 100,0.,10.); IHistogram1D* hNSec; hNSec = hbookManager->create1D("30","Number of secondaries", 10,0.,10.); IHistogram1D* hDebug; hDebug = hbookManager->create1D("40","Debug", 100,0.,200.); IHistogram1D* hTheta; hTheta = hbookManager->create1D("50","Theta", 100,0.,pi); IHistogram1D* hPhi; hPhi = hbookManager->create1D("60","Phi", 100,-pi,pi); // declare and bind "Quantities" to the Ntuple: // First tuple ("Primary"): Quantity initialEnergy; Quantity energyChange; Quantity dedx; Quantity dedxNow; Quantity pxChange; Quantity pyChange; Quantity pzChange; Quantity pChange; Quantity nElectrons; Quantity nPositrons; Quantity nPhotons; // Add and bind the attributes to the first nTuple if( !( ntuple1->addAndBind( "eprimary" , initialEnergy) && ntuple1->addAndBind( "energyf" , energyChange ) && ntuple1->addAndBind( "de" , dedx ) && ntuple1->addAndBind( "dedx" , dedxNow ) && ntuple1->addAndBind( "pxch" , pxChange ) && ntuple1->addAndBind( "pych" , pyChange ) && ntuple1->addAndBind( "pzch" , pzChange ) && ntuple1->addAndBind( "pch" , pChange ) && ntuple1->addAndBind( "eminus" , nElectrons ) && ntuple1->addAndBind( "eplus" , nPositrons ) && ntuple1->addAndBind( "nphotons" , nPhotons ) ) ) { G4cerr << "Error: unable to add attribute to nTuple1." << G4endl; // Must be cleaned up properly before any exit. delete ntuple1; exit(-1); } // Second nTuple ("Secondary"): Quantity px; Quantity py; Quantity pz; Quantity p; Quantity e; Quantity eKin; Quantity theta; Quantity phi; Quantity partType; // Add and bind the attributes to the second nTuple // if( !( ntuple2->addAndBind( "eprimary",initEnergy ) && if( !( ntuple2->addAndBind( "px" , px ) && ntuple2->addAndBind( "py" , py ) && ntuple2->addAndBind( "pz" , pz ) && ntuple2->addAndBind( "p" , p ) && ntuple2->addAndBind( "e" , e ) && ntuple2->addAndBind( "ekin" , eKin ) && ntuple2->addAndBind( "theta" , theta ) && ntuple2->addAndBind( "phi" , phi ) && ntuple2->addAndBind( "type" , partType ) ) ) { G4cerr << "Error: unable to add attribute to nTuple2" << G4endl; // Must be cleaned up properly before any exit. delete ntuple2; exit(-1); } //--------- Materials definition --------- G4Material* Be = new G4Material("Beryllium", 4., 9.01*g/mole, 1.848*g/cm3); G4Material* Graphite = new G4Material("Graphite",6., 12.00*g/mole, 2.265*g/cm3 ); G4Material* Al = new G4Material("Aluminium", 13., 26.98*g/mole, 2.7 *g/cm3); G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3); G4Material* LAr = new G4Material("LArgon", 18., 39.95*g/mole, 1.393*g/cm3); G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3); G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3); G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3); G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3); G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3); G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole); G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole); G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole); G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole); G4Element* I = new G4Element ("Iodide" , "I", 53. , 126.9044*g/mole); G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3); G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2); water->AddElement(H,2); water->AddElement(O,1); G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2); ethane->AddElement(H,6); ethane->AddElement(C,2); G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2); csi->AddElement(Cs,1); csi->AddElement(I,1); // Interactive set-up G4cout << "Test AlongStepDoIt [1] or PostStepDoIt [2] ?" << G4endl; cin >> test; if ( !(test == 1 || test == 2)) G4Exception("Wrong input"); G4cout << "How many interactions? " << G4endl; G4cin >> nIterations; if (nIterations <= 0) G4Exception("Wrong input"); G4double initEnergy = 1*MeV; G4double initX = 0.; G4double initY = 0.; G4double initZ = 1.; G4cout << "Enter the initial particle energy E (MeV)" << G4endl; G4cin >> initEnergy ; initEnergy = initEnergy * MeV; if (initEnergy <= 0.) G4Exception("Wrong input"); // Dump the material table static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); G4int nMaterials = G4Material::GetNumberOfMaterials(); G4cout << "Available materials are: " << G4endl; for (G4int mat = 0; mat < nMaterials; mat++) { G4cout << mat << ") " << (*theMaterialTable)[mat]->GetName() << G4endl; } G4cout << "Which material? " << G4endl; G4cin >> materialId; G4Material* material = (*theMaterialTable)[materialId] ; G4cout << "The selected material is: " << material->GetName() << G4endl; G4double dimX = 1*mm; G4double dimY = 1*mm; G4double dimZ = 1*mm; // Geometry G4Box* theFrame = new G4Box ("Frame",dimX, dimY, dimZ); G4LogicalVolume* logicalFrame = new G4LogicalVolume(theFrame, (*theMaterialTable)[materialId], "LFrame", 0, 0, 0); logicalFrame->SetMaterial(material); G4PVPlacement* physicalFrame = new G4PVPlacement(0,G4ThreeVector(), "PFrame",logicalFrame,0,false,0); // Particle definitions G4ParticleDefinition* gamma = G4Gamma::GammaDefinition(); G4ParticleDefinition* electron = G4Electron::ElectronDefinition(); G4ParticleDefinition* positron = G4Positron::PositronDefinition(); gamma->SetCuts(1e-3*mm); electron->SetCuts(1e-3*mm); positron->SetCuts(1e-3*mm); // Processes G4int processType; G4cout << "LowEnergy [1] or Standard [2] Ionisation?" << G4endl; cin >> processType; if ( !(processType == 1 || processType == 2)) { G4Exception("Wrong input"); } G4VContinuousDiscreteProcess* ionisationProcess; if (processType == 1) { ionisationProcess = new G4LowEnergyIonisationVI; } else { ionisationProcess = new G4eIonisation; } G4ProcessManager* eProcessManager = new G4ProcessManager(electron); electron->SetProcessManager(eProcessManager); eProcessManager->AddProcess(ionisationProcess); // Create a DynamicParticle G4double eEnergy = initEnergy*MeV; G4ParticleMomentum eDirection(initX,initY,initZ); G4DynamicParticle dynamicElectron(G4Electron::Electron(),eDirection,eEnergy); // Track G4ThreeVector aPosition(0.,0.,0.); G4double aTime = 0. ; G4Track* eTrack = new G4Track(&dynamicElectron,aTime,aPosition); // MGP Check next statement G4Track& aTrack = (*eTrack); // do I really need this? G4GRSVolume* touche = new G4GRSVolume(physicalFrame, NULL, aPosition); eTrack->SetTouchable(touche); // Step G4Step* step = new G4Step(); step->SetTrack(eTrack); G4StepPoint* aPoint = new G4StepPoint(); aPoint->SetPosition(aPosition); aPoint->SetMaterial(material); G4double safety = 10000.*cm; aPoint->SetSafety(safety); step->SetPreStepPoint(aPoint); step->SetPostStepPoint(aPoint); // Check applicability if (! (ionisationProcess->IsApplicable(*electron))) G4Exception("Not Applicable"); // Initialize the physics tables ionisationProcess->BuildPhysicsTable(*electron); // --------- Test the DoIt G4cout << "DoIt in material " << material->GetName() << G4endl; for (G4int iter=0; iterSetStepLength(1*micrometer); G4cout << "Iteration = " << iter << G4endl; // << " - Step Length = " // << step->GetStepLength()/mm << " mm " // << G4endl; eTrack->SetStep(step); // G4cout << eTrack.GetStep()->GetStepLength()/mm // << G4endl; G4VParticleChange* dummy= 0; if (test == 1) dummy = ionisationProcess->AlongStepDoIt(*eTrack, *step); if (test == 2) dummy = ionisationProcess->PostStepDoIt(*eTrack, *step); G4ParticleChange* particleChange = (G4ParticleChange*) dummy; // Primary physical quantities energyChange = particleChange->GetEnergyChange(); dedx = initEnergy - energyChange ; dedxNow = dedx / (step->GetStepLength()); G4ThreeVector eChange = particleChange->CalcMomentum(energyChange, (*particleChange->GetMomentumChange()), particleChange->GetMassChange()); pxChange = eChange.x(); pyChange = eChange.y(); pzChange = eChange.z(); pChange = std::sqrt(pxChange*pxChange + pyChange*pyChange + pzChange*pzChange); G4double xChange = particleChange->GetPositionChange()->x(); G4double yChange = particleChange->GetPositionChange()->y(); G4double zChange = particleChange->GetPositionChange()->z(); // G4cout << "---- Primary after the step ---- " << G4endl; // G4cout << "Position (x,y,z) = " // << xChange << " " // << yChange << " " // << zChange << " " // << G4endl; // G4cout << "---- Energy: " << energyChange/MeV << " MeV, " // << "(px,py,pz): (" // << pxChange/MeV << "," // << pyChange/MeV << "," // << pzChange/MeV << ") MeV" // << G4endl; // G4cout << "---- Energy loss (dE) = " << dedx/keV << " keV" << G4endl; // Primary // Secondaries physical quantities hNSec->fill(particleChange->GetNumberOfSecondaries()); hDebug->fill(particleChange->GetLocalEnergyDeposit()); nElectrons = 0; nPositrons = 0; nPhotons = 0; // Secondaries for (G4int i = 0; i < (particleChange->GetNumberOfSecondaries()); i++) { // The following two items should be filled per event, not // per secondary; filled here just for convenience, to avoid // complicated logic to dump ntuple when there are no secondaries G4Track* finalParticle = particleChange->GetSecondary(i) ; e = finalParticle->GetTotalEnergy(); eKin = finalParticle->GetKineticEnergy(); px = (finalParticle->GetMomentum()).x(); py = (finalParticle->GetMomentum()).y(); pz = (finalParticle->GetMomentum()).z(); p = std::sqrt(px*px+py*py+pz*pz); theta = (finalParticle->GetMomentum()).theta(); phi = (finalParticle->GetMomentum()).phi(); if (eKin > initEnergy) { G4cout << "WARNING: eFinal > eInit " << G4endl; } G4String particleName = finalParticle->GetDefinition()->GetParticleName(); G4cout << "==== Final " << particleName << " " << "energy: " << e/MeV << " MeV, " << "eKin: " << eKin/MeV << " MeV, " << "(px,py,pz): (" << px/MeV << "," << py/MeV << "," << pz/MeV << ") MeV " << G4endl; hEKin->fill(eKin); hP->fill(p); hTheta->fill(theta); hPhi->fill(phi); partType = 0; if (particleName == "e-") { partType = 1; nElectrons++; } else if (particleName == "e+") { partType = 2; nPositrons++; } else if (particleName == "gamma") { partType = 3; nPhotons++; G4cout << "Fluorescence photon: e = " << e/keV << " keV" << G4endl; } // NEW: Values of attributes are prepared; store them to the nTuple: ntuple2->addRow(); // check for returning true ... delete particleChange->GetSecondary(i); } //NEW: Values of attributes are prepared; store them to the nTuple: ntuple1->addRow(); particleChange->Clear(); } G4cout << "-----------------------------------------------------" << G4endl; //-old hbookManager->write(); // Tell the manager which histos to store hbookManager->store("10"); hbookManager->store("20"); hbookManager->store("30"); hbookManager->store("40"); // the destructor closes the corresponding file delete ntuple1; delete ntuple2; delete hbookManager; delete eTrack; delete step; delete touche; delete aPoint; cout << "END OF THE MAIN PROGRAM" << G4endl; }