// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4hLowEnergyTest.cc,v 1.10 2006/06/29 19:44:42 gunter Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // KaonMinusAtRestTest.cc // ------------------------------------------------------------------- // GEANT 4 class file --- Copyright CERN 1998 // CERN Geneva Switzerland // // // File name: G4LowEnergyTest // // Author: Christian Voelcker (from M. Maire) // // Creation date: ? // // Modifications: // // ------------------------------------------------------------------- #include "globals.hh" #include "G4ios.hh" #include #include #include "G4Material.hh" #include "G4ProcessManager.hh" #include "G4hIonisation.hh" #include "G4hLowEnergyIonisation.hh" #include "G4VParticleChange.hh" #include "G4ParticleChange.hh" #include "G4DynamicParticle.hh" #include "G4Electron.hh" #include "G4Positron.hh" #include "G4Gamma.hh" #include "G4Proton.hh" #include "G4AntiProton.hh" #include "G4Box.hh" #include "G4PVPlacement.hh" #include "G4Step.hh" #include "G4GRSVolume.hh" #include "G4UnitsTable.hh" #include "CLHEP/Hist/TupleManager.h" #include "CLHEP/Hist/HBookFile.h" #include "CLHEP/Hist/Histogram.h" #include "CLHEP/Hist/Tuple.h" HepTupleManager* hbookManager; main() { // Setup G4int niter=3; G4int imat=4; G4int verboseLevel=1; //G4int processID=9; //G4cout << "How many interactions? [10], Which material? [3], which Verbose Level? [1]" << G4endl; //G4cin >> niter >> imat >> verboseLevel; //G4cout<<"which process?"<> processID; G4double InitEnergy = 1e-3, InitX = 0., InitY = 0., InitZ = 1.; //G4cout<<"Enter the initial particle energy E and its direction"<> InitEnergy >> InitX >> InitY >> InitZ; G4cout.setf( std::ios::scientific, std::ios::floatfield ); // ------------------------------------------------------------------- // ---- HBOOK initialization hbookManager = new HBookFile("hionisation.hbook", 58); assert (hbookManager != 0); // ---- Book a histogram and ntuples G4cout<<"Hbook file name: "<<((HBookFile*) hbookManager)->filename()<ntuple("Primary Ntuple"); assert (ntuple1 != 0); // ---- secondary ntuple ------ HepTuple* ntuple2 = hbookManager->ntuple("Secondary Ntuple"); assert (ntuple2 != 0); // ---- secondaries histos ---- HepHistogram* hEKin; hEKin = hbookManager->histogram("Kinetic Energy", 100,0.,200.); assert (hEKin != 0); HepHistogram* hP; hP = hbookManager->histogram("Momentum", 100,0.,1000.); assert (hP != 0); HepHistogram* hNSec; hNSec = hbookManager->histogram("Number of secondaries", 40,0.,40.); assert (hNSec != 0); HepHistogram* hDebug; hDebug = hbookManager->histogram("Debug", 100,0.,200.); assert (hDebug != 0); //--------- Materials definition --------- G4Material* Be = new G4Material("Beryllium", 4., 9.01*g/mole, 1.848*g/cm3); G4Material* Graphite = new G4Material("Graphite",6., 12.00*g/mole, 2.265*g/cm3 ); G4Material* Al = new G4Material("Aluminium", 13., 26.98*g/mole, 2.7 *g/cm3); G4Material* Si = new G4Material("Silicon", 14., 28.055*g/mole, 2.33*g/cm3); G4Material* LAr = new G4Material("LArgon", 18., 39.95*g/mole, 1.393*g/cm3); G4Material* Fe = new G4Material("Iron", 26., 55.85*g/mole, 7.87*g/cm3); G4Material* Cu = new G4Material("Copper", 29., 63.55*g/mole, 8.96*g/cm3); G4Material* W = new G4Material("Tungsten", 74., 183.85*g/mole, 19.30*g/cm3); G4Material* Pb = new G4Material("Lead", 82., 207.19*g/mole, 11.35*g/cm3); G4Material* U = new G4Material("Uranium", 92., 238.03*g/mole, 18.95*g/cm3); G4Element* H = new G4Element ("Hydrogen", "H", 1. , 1.01*g/mole); G4Element* O = new G4Element ("Oxygen" , "O", 8. , 16.00*g/mole); G4Element* C = new G4Element ("Carbon" , "C", 6. , 12.00*g/mole); G4Element* Cs = new G4Element ("Cesium" , "Cs", 55. , 132.905*g/mole); G4Element* I = new G4Element ("Iodide" , "I", 53. , 126.9044*g/mole); G4Material* maO = new G4Material("Oxygen", 8., 16.00*g/mole, 1.1*g/cm3); G4Material* water = new G4Material ("Water" , 1.*g/cm3, 2); water->AddElement(H,2); water->AddElement(O,1); G4Material* ethane = new G4Material ("Ethane" , 0.4241*g/cm3, 2); ethane->AddElement(H,6); ethane->AddElement(C,2); G4Material* csi = new G4Material ("CsI" , 4.53*g/cm3, 2); csi->AddElement(Cs,1); csi->AddElement(I,1); static const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); G4cout<<"The material is: "<<(*theMaterialTable)(imat)->GetName()<SetCuts(1e-6*mm); //--------- Processes definition --------- G4ProcessManager* theProtonProcessManager = new G4ProcessManager(proton); proton->SetProcessManager(theProtonProcessManager); G4ProcessManager* theAntiProtonProcessManager = new G4ProcessManager(antiproton); antiproton->SetProcessManager(theAntiProtonProcessManager); G4hLowEnergyIonisation* hIonisationProcess = new G4hLowEnergyIonisation; theProtonProcessManager->AddProcess(hIonisationProcess); theProtonProcessManager->SetProcessOrdering(hIonisationProcess,idxAlongStep,1); theProtonProcessManager->SetProcessOrdering(hIonisationProcess,idxPostStep,1); // ready for being exploited by antiproton //G4hIonisation hIonisationProcess; //theProtonProcessManager->AddProcess(&hIonisationProcess); //theProtonProcessManager->SetProcessOrdering(&hIonisationProcess,idxAlongStep,1); //theProtonProcessManager->SetProcessOrdering(&hIonisationProcess,idxPostStep,1); G4ForceCondition* condition; // ------- set cut and Build CrossSection Tables ------- // // -------- create 1 Dynamic Particle ---- G4double pEnergy = InitEnergy*MeV; G4ParticleMomentum pDirection(InitX,InitY,InitZ); G4DynamicParticle p(G4Proton::Proton(),pDirection,pEnergy); G4DynamicParticle pbar(G4AntiProton::AntiProton(),pDirection,pEnergy); //--------- track definition (for this test ONLY!)------------ G4ThreeVector aPosition(0.,0.,0.); G4double aTime = 0. ; G4Track* ptrack; G4Track* ptrackBar; ptrack = new G4Track(&p,aTime,aPosition) ; ptrackBar = new G4Track(&pbar,aTime,aPosition) ; // proton or antiproton? G4Track& aTrack = (*ptrack) ; // do I really need this? G4GRSVolume* touche = new G4GRSVolume(PhysicalFrame, NULL, aPosition); ptrack->SetTouchable(touche); // -------- create 1 Step (for this test only)---- G4Step* Step = new G4Step(); G4Step& aStep = (*Step); Step->SetTrack(ptrack); // --------- check applicability G4ParticleDefinition* ProtonDefinition = p.GetDefinition(); G4ParticleDefinition* AntiProtonDefinition = pbar.GetDefinition(); if(! (hIonisationProcess->IsApplicable(*ProtonDefinition) || hIonisationProcess->IsApplicable(*AntiProtonDefinition)) ) { G4Exception("FAIL: *** Not Applicable ***\n"); } // Initialize the physics tables for ALL processes hIonisationProcess->BuildPhysicsTable(*ProtonDefinition); hIonisationProcess->SetPhysicsTableBining(0.5*keV, 3*MeV, 100); //hIonisationProcess.BuildPhysicsTable(*antiproton); G4Material* apttoMaterial ; G4String MaterialName ; // --------- Test the DoIt for the hIonization apttoMaterial = (*theMaterialTable)(imat) ; LogicalFrame->SetMaterial(apttoMaterial); // PostStepDoIt calls G4int iteration = 0; G4VParticleChange* adummy; G4Track* aFinalParticle; G4String aParticleName; do { adummy = hIonisationProcess->PostStepDoIt(aTrack, aStep); G4ParticleChange* aParticleChange = (G4ParticleChange*) adummy; // ------------ book primary physical quantities ------------- G4double pEnChange = 0, pxChange = 0, pyChange = 0, pzChange = 0, pChange = 0; pEnChange = aParticleChange->GetEnergyChange(); pxChange = aParticleChange->GetMomentumChange()->x(); pyChange = aParticleChange->GetMomentumChange()->y(); pzChange = aParticleChange->GetMomentumChange()->z(); pChange = std::sqrt(pxChange*pxChange+pyChange*pyChange+pzChange*pzChange); // ---- secondaries histos ---- G4cout<<"E and p of the primary particle: "<column("ench", pEnChange); ntuple1->column("pxch", pxChange); ntuple1->column("pych", pyChange); ntuple1->column("pzch", pzChange); ntuple1->column("pch", pChange); ntuple1->dumpData(); // ------------ book secondaries physical quantities --------- G4double e = 0, eKin = 0, Px = 0, Py = 0, Pz = 0, P = 0, ShID = 0; hNSec->accumulate(aParticleChange->GetNumberOfSecondaries()); hDebug->accumulate(aParticleChange->GetLocalEnergyDeposit()); for (G4int i = 0; i < (aParticleChange->GetNumberOfSecondaries()); i++) { // The following two items should be filled per event, not // per secondary; filled here just for convenience, to avoid // complicated logic to dump ntuple when there are no secondaries aFinalParticle = aParticleChange->GetSecondary(i) ; e = aFinalParticle->GetTotalEnergy(); eKin = aFinalParticle->GetKineticEnergy(); Px = (aFinalParticle->GetMomentum()).x(); Py = (aFinalParticle->GetMomentum()).y(); Pz = (aFinalParticle->GetMomentum()).z(); P = std::sqrt(Px*Px+Py*Py+Pz*Pz); aParticleName = aFinalParticle->GetDefinition()->GetParticleName(); G4cout << aParticleName << ": " << " " << e << " " << eKin << " " << Px << " " << Py << " " << Pz << " ***" << G4endl; hEKin->accumulate(eKin); hP->accumulate(std::sqrt(Px*Px+Py*Py+Pz*Pz)); G4int ptype; if(aParticleName == "proton") ptype = 0; else if(aParticleName == "e-") ptype = -1; else if(aParticleName == "e+") ptype = 1; else if(aParticleName == "antiproton") ptype = 2; // Fill the secondaries ntuple ntuple2->column("px", Px); ntuple2->column("py", Py); ntuple2->column("pz", Pz); ntuple2->column("p", P); ntuple2->column("e", e); ntuple2->column("ekin", eKin); ntuple2->column("ptype", ptype); ntuple2->dumpData(); delete aParticleChange->GetSecondary(i); } aParticleChange->Clear(); iteration++; G4cout << "******* Iteration = " << iteration << G4endl; } while (iteration < niter) ; cout <<"Iteration number: " << G4endl; hbookManager->write(); delete hbookManager; // delete materials and elements delete Be; delete Graphite; delete Al; delete Si; delete LAr; delete Fe; delete Cu; delete W; delete Pb; delete U; delete H; delete maO; delete C; delete Cs; delete I; delete O; delete water; delete ethane; delete csi; delete Step; delete touche; cout<<"END OF THE MAIN PROGRAM"<